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_roots, find logarithms, and calculate trigonometric functions. To these

. feats, the programmable calcul: .or adds ore wore: it can test an equality

CALCULATORS, COMPUTERS, AWND CLASSROOMS

Introduction

"
o
*

The developers of electronic chip technology may have dreamed about

]5

revolutionizing the industrial world, but it is doubtful that they realized
the extent to which this technolégy would revolutionize the educational

world. Nowhere does that revolution have more potential for impact than , in
mathematics classrooms from kindergarten to college. Paradoxically, these

silicon-based chips frée us from routine thinking and stretch our minds to

new thinking patterns at the same time. This collection‘of readings explores

& .
that paradox and points the way to thé mathematics curriculum-of the Suture.

The book begins by considering simple hand—held calculators, proceeds
to investigate programmable calculators, and concludes with an examination
of the educationai implications of microcomputers. ' The distinction between

these three is often fuzzy and hard to discern. The reader should not be . =

5

4 - )
overly concerned about forming fixed categories. Microcomputers do basic
%

four—-function arithmetic just as hand-held calculators do. But both pro-
grammable, calculators and microcomputers do more than calculators. Calcula-

-—-

tors add, subtract, multiply, and divide. They may raise to powers, take
- - ‘ - - - i c= - = - q -

or inequality to determine if is true or false. This is the basic step
for logical prngramming and decision-making. To this extent, the program-
mable calculator is éssentially a computer. But a microcomputer usually can

do one.additional thing: it can'operate with a programming language, using

3

numbers, letters, and/or symbols as commands as well as elements to operate ‘
o4

C.. -8.

on.
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- If there is a logical progression between these machines, there is ’ \

-

probablyoa logical progression kfn a similar manney) in the way the machines

may be used.in classrooms. The éalculator can free students from rout¥ne .

- o
LY

computation and enable them to focus upon results and relationships. The

t

programmable calculatox'adds the aspect of logical tésting and sequencing
- . 28

to the realm of study. And finally, the microcomputer expands our capabili-

tiee to give instructions and to study the instruction-giving process. Iron-

ically, this is a return to the idea of algorithm -~ but algorithm on a

ghinking, analytical level rather than on a routine, mechanical level. Thus,
HE . A .

the silicon chip both frees us from thinking and stretches our thinking re-

‘ o

quirements at the same time.

o

%
The first section of this Book considers general implicatioms for the,
mathematics chr;iculum impiied by this calculator freedom. It is balanced
bi Section Twa exploring inappropriate ways in which ccleulafors can ye

used. Freedom from thinking about routine calculations provides freedom

3

for thinking'about problem-solving, the theme of Section Three. Section Four

concludes the consideration of calculators by including some specific lesson
¥

A
ideas for using calculators in classrooms.

- - -—Section Five ‘considers brogiamﬁéblé calculators. Just as the progfém—

E)

mable calculator %s a bridge between calculators and computers, this .section,

is a bridge between the initial and final sections of the book.

Seétion Six considersways in which éomﬁdte;; can be introduced into
schools. ég such, it is concerned with physical, economic, and even polit-
ical considerztions. The following section (Section Seven) explores impli~

cations of the computer for the mathematics curriculum,.and comsiders not

only new topics, but new approaches to o;d topics as well. Computer literacy

s o
-”[Hil(ji is the theme of Seétion Eight. It is generally agreed that all students need

' A\
to know about computers; it is not generally agreed just what they‘need(iqz\ ) 75;

]




R
33
.

know in order to function in tommorrow's society. _This"section explores

questions of "need to know" and "nice to know." The book concludes with a.

hint of the possible range of the use of comﬁuters: the ability to simulaté

H - . b o

. < . .
real-world events: This ability to mimic change and the change-process

opens new areas for mathematical exploration and fakes them accessible to’

all classrooms.
* <

This book is a glimpse at the future. Like a quick glance, it may be -

incomplete and perhaps even distorted in parts. But we, think it is an ex-
. .

Y.

citing glimpse, and we hope you will-share that excitement with &s.

Jon L. Higgins
Vicky Kirschner

Editors
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CALCULATORS IN THE. CLASSRQOM:
A PROPOSAL FOR CURRICULAR CHANGE*

Historical Perspective

A

£t ¥
* 8- &

A careful study of the history of mathematics educatior will reveal that
computation has always been the focus of the elementary school mathematics
« curriculum. In the i8th century, children were taught ciphering. Rote ¢
e computation was taught without any attempt to develop 2n understanding of
the process. During the 19th century a few persons, 1ike Warren Coburn,
called for attention to meaning but the curriculum remained computational.
During the 1930s there was a movement toward social utility and developing
meaning in mathematics. Then in the period from 1958 to 1971 there was an
emphasis on teaching the structure of mathematics. Viewed from the
perspective of today, there was one unfortunate aspect of the .so called
“modern mathematics” movement. Much attention was given to rationalizing
o, algorithms.. Eack of the complex-algorithms (e.g.,~the division algorithm)
,» ~ was taught in great detail using a subtracting approach so that students .
would understand why the algorithm worked. But computational algorithms
¢ are nothing more than a set of rules for efficient paper and pencil
answer-finding. e ' o

While it is important for students to understand the mathematics they are
learning, time spent teaching children why algorithms work does little to
help pupils understand mathematics and its applications. Vestiges of this
unfortunate curriculum trend remain in currént textbooks. Since 1971 there
IS has.been a well-defined swing toward the "Basics.” In elementary school

: classrooms, this has been interpreted as more emphasis and time teaching ~

basic facts and computation with even less time for cdncepts and

, applications. ’ ’ )
Throughout the eras described above, the curriculum has remained
domputational. There is great contrast between the recommendations of
leading mathematics educators and practices in the classroom.

At the same time this country was experiencing a Back-to-Basics movement in
the 70s, advances An electronic technology were reshaping the mathematical
needs oF society. Today the availability of inexpensive calculators has

* ~ eliminated the need for complex computationdl algorithms. Before
3 calculators (B.C.) it was necessary to be proficient in computations to
¥ * apply mathematics. That has now changed. Cash registers show the amount of
: change and nearly every home and office has a calculator whjich can perform
> 7 complex computations rapidly. It is quite ironic that as the calculator

availability was reducing the need for computation, schools were increasipg
their emphasis -on paper and pencil computation proficiency.

Current Status of the élementary School Mathematics Curriculum

o

. A study of ‘currently available elementary school mathematics texts suggests
T that the curriculum is computationally.oriented. A typical fifth grade
: text devotes 139 pages (37%) to computation. However, téachers do not
teach all thebcbapters. For a number of reasons decisions are made to omit
© certain chapters. Most classes cannot finish the text in the time alloted
for mathematics. In practice, the chapters omitted are usually
noncomputational. Chgpter% covering geometry, measurement, probability,

N [
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statistics, and problem-solving are first targets for omission. The g
highest priority is given to teaching computation. In fact, while ceftain
topics are omitted, daily work is supplemented with additional
computational worksheets. In many classes, computation completely
dominates the year's work. My experience and that of my colleagues
observing in schools almost daily for an entire school year suggests vhat
computation is the major emphasis in nearly every classroom. Calls for
accountability and minimal competency testing have increased the time Spent
teaching computation since parents and school boards want to be sure that
children know their "Basics.” The newer: texts reflect this trend.

The Proposal

1. Shift firom a computation-based curriculum to a conceptually orieq}ed
curriculum utilizing the calculator as an instructional tool.

2. Eliminate the teaching of complex computations in the elementary
school.

Rationale

1. We cannot afford the cost in time of teaching.complex computations.
Through surveying teachers, observing, and analyzing textbooks, I aave
concluded that of the first nine school years in studying mathematics _
more than two years are devoted to teaching the division algotithm.
When the level of proficiency attained by the pupils is considered,
along with this information, I conclude that we can no longer afford to
teach complex long division. An analysis of other computational
procedures will reveal that the cost benefit ratio is far too high. The
time saved by dropping this topic could be devoted to applications and
problem-solving where the focus would be on when to divide, not how to
divide.

2. Complex computations by paper and pencil are no longer necesscTy.

3. A computationally oriented curriculum inhibits the development of
problem solving. A heavy emphasis on algorithmic thinking tends to
encourage the application of rule-seeking behavior, even when it is not
appropriate. Successful problem-solvers need to try a variety of
approaches, apply heuristics, and recognize that more than rule
jdentification is required. With a calculator to perform computations,
pupils are freed to focus on the problem rather than being distracted
by switching to algorithmic thinking to compute.

4. The NAEP data suggest that l3-year-olds are not proficient in complex
computations, even with all the time devoted. An examination of the
National Assessment data (Carpenter et al., 1978) reveals that less
than two-thirds of the 13-year-olds could perform a long division
problem (three digit by two digit). Only 45% of the 13-year-olds
could solve a single-step word problem requiring single digit

division." S
14 :




Other topics are of more importance. In order to use mathematics
meaningfully in today's society an understanding of certain other
topics is important. More attention should be given to estimation,
interpreting data, geometry, measurement, and the use of decimals and
percents. Time will be available for these important topics only if
computation is deemphasized.

k)

Recommendations for Curricular Ctange

Specifically, I am proposing that the following complex computations be
excised from the curriculum.

1. Division with two or more digits in the divisor (e.g., 37/296).

This copic consumes more time than any other single computational topic
in the elementary school curriculum. On the other hand, the single
digit divisor algorithm is relatively easy to teach and could be
retained. It is critically important that pupils learn the meaning of
division. This can certainly be accomplished with single digit divisor
computation. While I am recommending that calculators be used to
perform complex divisions, attention should be given to interpreting
quotients and estimating results. It is essential that children
attach meaning to their calculator results. Calculator activities have
been published which focus on this objective (Vervoot and Mason, 1977,
and Reys, et al., 1979aé&b).

462
Multiplication by two or more digits (e.g., x 89 ). Children should
gain proficiency with problems such as

326 39000 °
x8 and x 4 .

Addition of fractional numbers with unlike denominators. This topic
has proven to be one the most difficult and thus time-consuming topics
in the curriculum. The difficulty may result from the cognitive
demands of the task. Addition of fractional numbers requires formal
thought and most elementary school pupils have not reached this ,
cognitive level. This skill can probably be taught mdre effidiently if
begun in the junior high school.

Complex computations with decimals. Such tasks as 3.45 x .865 or
456.78 ¢+ 6.7 are more appropriately performed on a calculator.

o What Should We Teach?

I will not attempt to describe a new curriculum in detail but instead make
certain clarifying points related to the proposal.

1. Insist on mastery of basic facts.

It is’important that children memorize the addition and multiplication

15




facts. As Professor Schoen has shown, the calculator can be quite
useful in teaching the basic facts.

2. Stress the concepts of addition, subtraction, multiplication, and
division. It will be easier to do this if less emphasi, is placed on
computation. i

3. Stres estimation and mental arithmetic.

With calculators used for complex computations there is much importance
in children being able to estimate the answer, and to judge whether the
result makes sense. <Along with this, ‘more time teaching mental
arithmetic would be quite useful.

4. Emphasize applications.

Mathematics is studied in large part because of its utility, yet the
curriculum has not included much attention to applications for two
reasons. We have reasoned that pupils need to learn to compute before
they can apply mathematics and time has not been available because of
the emphasis on computation. This must change.
5. Emphasize décimals.

6. Be sure that such topics as measurement, statistics, probability, and

problem-solving are taught.

These topics have appeared in elementary school texts but have been
given low priority. They should be considered as basic.

7. Include computer literacy.

Since computers play such a central role in today's society, children
should begin to learn about them at an early age.

The NCSM list of 10 oasics (1977) should become the foundation for
curriculum development. Number five on the NCSM list is "appropriate
computational skill.” This paper suggests one interpretation of this
statement.

The Role of the Calculator

%

Although this proposal seems t0 stress the calculator as a substitute for
paper and pencil computation, the- calculator is actually a highly versatile
instructional aid. A calculator can be used in concept development quite
effectively since many examples can be explored quickly., Consider the
concept of prime number. A number can be tested for primeness quickly by
dividing on a calculator. Pupils must-know what divisors to try but the
focus can remain on prime.since the child does not” have to take the time to
perform the paper and pencil division. The concept of decimals can be
introduced quite early and developed through calculator activities. More
realistic numbers can be used since the calculator-handles “grubby” numbers

16




just as well as "nice” numbers. Many motivational calculator games develop
import nt concepts such as place value, estimation, integers, and d
functional ru’es. :

Summary

7he curriculum changes I am proposing may seem radical but the mathematics
needs of society have changed in the last few years with the advent of
electronic technology and will change even more in the near future. A
computationally oriented curriculum 1is archaic and will not prepare our
studénts for the 21st century. We must shift the emphasis to applications
and topics that now are crowded out by the time spent on computation. Only
by ‘excising complex computations can time be made available for. -
applications, problem-solving, and other important topics. Such changes’
have far reaching implications, from teacher education to textbook
preparation, '

&

This document may be obtained from EDRS as ED 175 631,
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Towards

. At a time when a cheap calculator can be
bought for the price of two good cabbages, we
need to redefine our aims for numeracy.

I suggest the following definition.

Basic numeracy is the ability to use a
four-function electronic calculator sensibly

&

If this definition is accepted it is obviously
necessary to re-examinec ouf objectives in the
teaching of calculation in mathematics, parti-
cularly where it is related to the paper and pencil
algorithms which form the core of this work in
primary schools.

The definition needs tightening up by expanding
what I mean by “sensibly”’. This se2ms to me to be
the crucial question, and 1 will try to define
“sensibly” generally and by giving specific exam-
ples. I will then consider the place of algorithms in
the scheme of our approach to mathematical
calculation. . )

1 We need to be able to check that we or the calcu-
lator have not made a mistake and giv
wrong result. This checking can take severa
forms-and, depending on the seriousness of o
congern in getting the correct er (to
necessary accuracy), we-may usé Bne ot
of them.

— a)"Does-the.answer make scnse? (32363 miles

is a long walk.)

b) Repeat the calculation in a2 different order,
using, .if possible, a different cperation, at
least three times.

¢) Very rough approximation. (Is the decimal
point in the right place?)

d) Approximation to one figure accuracy (in
terms of salaries, say, £3,000 is very different
from £1,000 or £9,000). "~

" containi™

a Definition of Basic Numeracy

MICHAEL GIRLING

¢) Use of pattern. (32x87 should end in 4;
3002 x 9007 probably won’t though!)

f) Work out intermediate results and use the
previous checks on them. (Mr. Hope-Jones,
when he was a master at Eton, was presented
with a rubber stamp by one of his sets which
said, “You have substituted fot = too early”.
This stamp is now obsolete!)

g) Itis important to check that the input data
is reasonable. (9,291 boxes of chocolates at
3p cach?)

We need an understanding of the relative size of
numbers. What numbers are appropriate to
describe the number of pages in a book or the

‘number of words on a page, say. How long is a

million seconds; how short is a millionth of a
second? This skill is not easily acquired. We
would make a start if every calculation we asked
for, except for those needed to investigate
pattern and structure in the number system,
were related to a realistic problem. We should
never require a calculation for which “Does the
answer make sense?” is an irrelevant check.

We need to be able to perform mental calcu-
lations for speed, for convenience and so as to be
atle to hold our own in the commercial and
industrial world. The standard of mental skill
we achieve will vary, and depend on our ability
and interest. The minimum should probably

a) the ability to give and reccive change by
“counting on”’; <

b) muitiplying and dividing by 10;

c) addition facts to 20 (quick recall);

d) doubling and halving (varying degrees of
difficulty);

¢) multiplication facis to 10X 10 (abolish table
squares?).

Reprinted by permission from Mathematics Teaching 81: 4r5; December 1977.
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The standard will vary mainly in the ability to
chain these processes together and in the speed
with which they are performed. Speed should
always be considered less important than accuracy.
New strategies need to be devised to encourage and

. promote mental work, perhaps a new campaign:
“Dont show your working™’!!

Algorithms

I am not going to suggest that pencil and paper
algorithms should not be taught, but that they
should only be taught as part of the armoury of
techniques that we have to help in an under-
standing of number and not because they are useful. o

This is not just a slight difference in emphasis but,
I believe, -has quite dramatic consequences:—

a) “The concentration is now unequivocally on
understanding the process involved.

o= - b) There is a very clear advantage in studying as

many different algorithms as can be manu-
factured; for example all possible methods of .
subtraction should be used!

c) The most refined methods of long division, for
instance, which may be the least illuminating,

’  need not be taught—at least not to everyone. “

d) Therc is no need for anyone to be stopped in
their progress in mathematic®through being
unable to perform the useless algorithmis we
now requive.

It is perhaps worth adding that the’ tinie that
might be saved by cutting out the practice of tech-
niques could be well used by more attention to
a) incrcasing"?r_lcnta! facility;

. b) early introduction and manipulation of scien-
tific notation; -
¢} developing techniques of approximation;
d) serious invcstigation of pattern in number.

.
.

- - - s (M. Girling wishes it to_be_known that his views are
understood to be controversial, and are not necessarily
shared by his colleagues. The implications need to be -
discussed not just by teachers but by employers, parents '
and leachers in tertiary education.)
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Calculators in the
Elementary Classroom:
How Can We Go Wrong!

N By Robert E. Reys .
Hand-held calculators are widely either own or have access to a
available. The 1977-78 National As- hand-held calculator, only slightly ,
sessment of Educational Progress-re- . over 20 percent of schools reported X v
ports that 75 percent of 9-year-olds, 80 ~ having calculators (Wyatt et al.
percent of 13-year-olds, and 85 percent 1979).
of 17-year-olds have access to at least (b) Basal textbook series have yet
one’calculator. State and local surveys to integrate calculators into -their
document thzt this statistic increases programs as an instructional tool.
yearly. Only 11 percent of the teachers re-
The current proliferation of calcu- ° ported that their mathematics text-
lator-related activities for school pro- books included activities written
grams are evidence of the impact of for calculator use. Interestingly
hand-held calculators. Dramatic enough, a majority of teachers ~
changes have been reflectzd in basal thought their texts should include
series and supplementary publications activities that use calculators (Reys
that are being designed to take advan- et al. 1980). Furthermore, few sup-
tage of the existence of calculators. plementary materials exist that i
Thus the role of calculators in elemen- provide pragmatic use of calcu-
tary school mathematics must be seri- lators with content typical of
ously considered and raises a pertinent today’s mathematics program.
question, namely, How. can we go (c) Lack of familiarity with calcu-
- wrong? : lators. Only 4 percent of the ele-
—-~ We can go wrong by— , mentary teachers had attended a -
| - T .- -~ calculator. workshop, yet more
1 Banning theuse. Q\ : than two-thirds of them wanted t6 . ' o
calculators in mathemétics\\ leamn ways of usmg calculators in
classes ) ‘ " -._ their mathematics classes, (Reys et

A tremendous amount of inertia is to - - 1986).

. - be overcome if calculators are to have  This documents the need for a massive -
an impact on clementary school  (ransfusion designed to provide aware-. _

mathematics programs. Several things  pess and effective instructional uses of ~ ~ -
contribute to this inertia. calculators in elementary schools.

(a) Few calculators exist in scEools. & T

. . Cad e
Despite the fact that most children 2. Forbidding the use of  ° )
- calculators on standardized -

tests . —

Rebert Reys is o profmor of MMW
tion at the University-of Mizsouri in Columbia. More than 80 percent of the clemen-
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tary tcachcrs said calculators should be
available to children in school. (Reys
et al.) This is a stzong endorsement of
calculator use, yet nearly all of the
teachers cited standardized tests as the
principal reason for not using calcu-
lators. Teachers feel responsible for
prcpanng students for these tests and
since computation is a separate strand
in aimost every standardized test. em-
phasis is placed on paper-and-pencil
computation. The second mathematics
assessment by the National Assessment
of Educational Progress reports that
students using calculators do better on
direct computation, but the use of cal-
culators has little effect on problem
solving. (Carpenter et al. 1980)

" Suppose your school uses calculators
the next time standardized tests are ad-
ministered. What would likely happen?
There will be a jump in computation
scores, with little change on other por-
tions of the est. Foul! Foul' you cry.
This isn’t fair—children aren’t sup-
posed to use calculators on tests. Why?
The following problem is one selected
from the mathematics problem-solving
portion of a widely used standardized
text and slightly modified:

In servicing a car the attendant used
5 quarts of oil at 75¢ a quart and 15
gallons of gasolinie at 86¢ a gallon.
What was the¥total cost for oil and

gas?

If a child were allowed to use a calcu-
lator to find the answer, would the cal-
culator do the problem for the child?
Does the calculator decide what keys
to punch? Does the calculator interpret
the result? Calculators don’t think for
you; they only do what they are told to
do. Many employers recognize this and
ask prospective employees to bring a
calculator to use on job application
tests.

Test developers are now preparing
forms with which students can use cal-
culators. If a few schools allowed stu-
dents to use calculators on standard-
- -jzed tests, it would have a tremendous
impact on test development and accel-
“-erate the construction of assessments
using calculators. Calculator forms of
standardized tests would soon-appear.
Most importaritly, when teachers know
chalculators can be used in all

stages of the lcar\ning process—f{rom
introductory development to evalua-
tion—they can concentrate on problem
solving and higher level mathematics
learning. :

3. Failing to recogrnize the
intangibles associated with 7
calculator use.

Dramatic increases in computation
performance are consistently associ-
ated With calculator use. Less objec-
tive. yet extremely strong evidence
suggests that pupils show more enthu-
siasm toward and confidence in solving
problems; greater motivation for learn-
ing, which is accompanied by a more

- positive attitude toward miathematics:

greater persistence in solving problems,
which results in more time on th. task;
recognition of different calculator solu-
tions to the same problem: and in-
creased awareness of weaknesses and
limitations of calculators, such as cal-
culators performing only what the op-
erator keys in, overloading. stroking er-
rors, or mechanical errors that
sometimes occur in the calculator.
(Wheatley et al. 1979) All of these are
extremely valuable educational goals
and should be considered in evaluating
the impact of calculators in the class-
room.

4. Creating another false
dichotomy '

In recent years, mathematics education
has ‘experienced a number of false di-

. . . d
chotomies such as new mathematics

versus old mathematics. basic skills
virsus regular mathematics programs,
skill versus concept development, and
discovery versus expository lessons.
To consider calculator programs ver-
sus noncalculator programs is to create
another false dichotomy in mathe-
matics education. Calculators must be
viewed as another tool within the
mathematics program and used as
such. There are many topics appropri-
ate for calculator usage and others
equally inappropriate. These differ-
ences must be recognized and treated
accordingly in developing instructional
programs. Thus, the question is not
should calculators be used, but when,
where, and how can they be used most

cflectively. '
16
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5. Using calculators to

, check paper-and-pencil

calculations.

Teachers often cite checking paper-
and-pencil calculations as che best use
to be made of calcutators by their stu-
dents. Over 85 percent of the elemen-
tary teachers indicated that calculators
should be used to check paper-and-
pencnl computation. (Reys et al. 1980)
This is perhaps the most popular use of *
calculators by teachers in elementary
schools today. Yet asking punils to do
lengthy calculations and then asking
them 10 check their work with a calcu®
lator is of questionable educational
value. Providing an easily accessible
answer key is a much more efficient use
of a.child’s time. Furthermore. chil-

- dren wonder why they should spend so

much time doing the paper-and-pencil
calculation if a calculator is available.
This reinforces the notion that use of
calculators is cheating. a feeling that
should be avoided under any circum-
stances. If calculators are 1o be used 10
check work, it is far more realistic to
perform the calculation twice using the
calculator and 1o compare these an-
swers.

6. Emphasizing the
calculator in developing
paper-and-pentil
computation algorithms.

It has been suggested that paper-and-
pencil computation algorithms be de-
veloped with the calculator. For ex-
ample, the calculator could be used to
find the partial products in figure 1. but
why would you want to? This is a very
artificial use of a calculator. If you
have a calculator available, it is much
more reasonable to do the computation
with a single operation.

There are. of course, calculator al-
gorithms which are important and re-
quire explicit development. For ex-
ample,

- 1234567
X 7007

presents an interesting problem that
cannot be solved directly with most
calculators. Yet thoughtf! use of a cal-
culator and a modification of the typi-
cal multiplication algorithm provides a
spcedy and accurate solution. In fact,




the most appropriate algorithm for
many computational problems will de-
pend on the quantitics and the internal
logic of the calculator. Our teaching
must be designed to help students de-
_cide which algorithm or combination
*of algorithms is needed to solve a par-
ticular problem.

s
+

n

Fig. 1
) 483
X 24

L1
20x463 — [ |

4 X463 —— >

7. Using calculators
only after basic facts
have been mastered.

Many exciting ways of using calcu-
lators to help develop basic facts exist.
Research evidence indicates that the
development of basic facts is, in fact,
enhanced in the primary grades
through calculator use. (Channel
1980). To unequivocally ban calcu-
Iators or ignore their potential contri-
bution in the development and mastery
of basic facts is a serious error of judg-
ment.

é. Using calculators &
or..; after the concept
. has been taught.

Calculators can be used to reinforce
and cxpand many mathematics con-
cepts that have been introduced. No
researcn evidence exists'to support the
claim that concepts must be developed
prior to calculator use (Suydam,
1979). The notion of developing under-
standing through examples, followed
by explanation and discussion is a
common technique in mathematics
teaching. Why shouldn’t a calculator
be used to give punils many examples
of concepts. such as negative numbers,
decimals, or exponents before, or at
Jeast in conjunction with formal in-
struction on these topics? This question
deserves careful discussion by teachers
and attention by researchers. In the

meantime, the use of calculators |

O "1 be used in all learning stages

ERIC
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and not arbitrarily restricted io con-
cepts that have already been taught.

9. Assume that concrete
materials or manipulatives are
less important in the learning
process.

With the increased computational fa-
cility among you g pupils, it is tempt-
ing to bypass models (such as counters,
an abacus and mulii-base blocks) in
developing place value concepts and/
or computational zlgorithms. Omission
of, or even less attention to such mod-
els would be dangerous and increase
the likelihood of mechanical rather
than meaningful learning. The chal-
lenge is to plan concrete models which
parallel and complement the calculator
experience.

10, Assuming that the
process of formulating
large numbers is
accelerated.

Calculators certainly provide many op-
portunities for e«periences with small
and large numbers. Facility of dis-
playing or reading numbers may oe
falsely interpreted as understanding.
Research has shown that understand-
ing the formuiation of numbers is a
delicate cognitive process and that it is
developed over a long period of time.
There is no research evidence to sug-
gest that this period of concept devel-
opment will be shortened or that any
stages will be bypassed through cilcu-
lator experiences.

Where to from Here?

Much research related to the use of
hand-held calculators in elementary
schools has been completed. Without

doubt the most important result from

‘this research has been its consistent
findings that *“almost all of the studies
comparing achievement of groups us-
ing or not usin< calculators favor the
calculator ‘groups or reflect-no signifi-
cant differences.” (Suydam 1979). This
suggests that schools that have calcu-
lators have everything to gain in using

them as an instructional tool in their

mathematics program. At this stage,

the most clearly needed research is lon-

gitudinal—at least several yeais in
17
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| ey ataeds
tengihi—studics of students who have

had sustained school experience with
calculators In the meantime, we can-
not ignore ‘calculaters and simply hide
our heads in the sand.

As with any new te¢hnological de-
velopment, there are many things that
will change. As a result*there are many
places to go—some right, others wrong.
The only clear wrong decision at this
time would be for teachers and schools
to ignore or ban hand calculators, thus
not considering them in future devel-
opment of their mathematics pro-
grams. It is clear that hand calculators
hol¢ great potential as an instructional
tool for the elementary school. The ed-
ucational value has been proclaimed
by many, including the National
Council of Teachers of Mathematics
which “encourages the use of calcu-
lators in the classroom as instruction
aids and instructional tools.”
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A look at much of the calculator material
currsntly available for use in classrooms suggests

that we are in the midst of a fast growing. techno-

ogical “movement, one which has not allowed us

»much time to consider how best to implement this
technology. Calculator books and magazines are

in abundance, and much of what appears in these.

supplementary materials represents merely play &

activity, or worse forces the use of the machine
with little attention to the goals of school mathe-
matics. It is possible to classify the most common
abuses (abuses in terms of the activities used as a
part of school ma:hematics, not necessarily in
terms of their potential interest to individuals)
into four general categories.

1. Calculations, often with awkward numbers,
Jor no apparent purpose other than to require the use
of the calculator. Some of the proposed calcu-
lations might be interesting or motivating to some
because of the-chance to use the calculator, but a
full page of ‘bignumber’ calculations looks formi-
dable whether or not the exercises are to be done
with a calculator. One can raise the question
regarding this type of abuse: Will such activity
create different attitudes fowards mathematics?
Pupils will still make mistakes pressing the buttens,
and when practising in such situations may well be
incliried to say “So what”. It is possible to use
some of the big number calculations which are
embedded in sd-called applications to develop
some sense of large numbers, but because of the
crude measurements and approximations which
must be used, most of these activities are more
appropriately estimation exercises rather than
calculator exercises. As an example, take the
activity about the length of the line if all cars in the
U.S. were lined up bumper to bumper, which
appeared in the aricle Calculations You IWould
Never Make Withcut a Minicalculator [1]; one might
suggest that the article should have been titled
Calculations You Would Never Make.”

2! Games and puzzles with no apparent
mathematical objectives. This'is not meant to
suggdst that games and puzzles are not a valuable

teaching aid {in fact, the November 1976 Anth-

metic Teacher describes a number of such activities
which fit very nicely into a school mathematics
curriculum, and a great number of the calculator
games have a logical reasoning compornt—an
important goal in school mathemitics), but
rather it is intended as a caution against an indis-
criminate use. So the listing of this as a category

Q.
=
i
n

DAVID C. JOHNSON
Chelsea College, London

of abuses is not intended: to suggest that learning
should not be fun, but rather that such fun should

be used to advance our cause. This is particularly -

important since an ofien heard, teacher complaint
is that the curriculun, is already so full that they
are hard pressed to *“‘cover the existing material”.
3. Mystical button pushing. One of the most
frequent abuses, and a good example for this
category, is ‘making words by turning your calcu-
lator upside down'—often a fun activity, but one

. best left for home or pleasure. It represents just one

more attempt to coerce children into doing some
basic operations with numbers, utilising a calcu-

~lator. -

o

The button pushing category also includes an
even worse abuse; children are asked to use the
calculator to perform some activity for-which they
lack some basic prerequisite understanding. This
is not an argument for limited keyboard display, as
I do not feel there is any problem if a child just
wants to seec what happens when certain buttons
are pushed. Rather, the concern is about requiring
responses or procedures for which the child lacks
the necessary background for ‘und<rstanding. A
good example .of this abuse appears in a récent
U.S. calculator putlication intended for use with
primary age children. Early in the first book the
children (aged 5 to 6) are asked to use their
calculator to count the ones in a display

1111

11111

11 .
by presing 1 + each time they count. And
this is before_any consideration has been given
to the concept of addition or the ‘-’ symbol. One

" can reasonably ask what the author expected to

achieve with such an activity—and whether there
are nog better ways of doing this. ,

4. Checking answers. I expect to find con-

siderable disagreement with listing this category
ag an abuse. However, why use the calculator to
check when it is usually the best device for per-
forming the calculdtions in the first place? Why
not merely give pupils an answer sheet for checking
answers; do we need a relatively expensive picce
of equipment for this task ? (The Editor makes this
very point in the Decémber 1977 MT (2].) For
those who welcome the motivational aspect of the
calculator, this may ‘well become ‘old-hat’ when
the curriculum is finally revised to take full ad-
vantage of this device in teaching and learning.
It seems that with today's technology the more

Reprinted by permission from M@_:_hgma_ugs__l‘_eg_chinz. 85: ° 50-59_ ; December 1978.
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critical chcckmg sklll is thc ablhty to estimate and
m the rcasonabugncss of answers’ (more about
% thisfater). .

to leave a result in omlonal form, e.g.:
thc number of possi e Kl\cr hands:

+ One hates to begii. an, hmcie by llstmg all the . i2C, =* _2.2'_' ;

cgatwc points, p“rtlcularlvt when _the calculator ' .5Y(52--3)! o
offers so much-that:is good. However, some caution the number of possnble bridge hands: =«
is called for before we go too far. We do not wan T 591
to be in a position where 4 critic questions our use —+— Cu -

of this device, demandmg to Lndw-wh'e’her it is
not just another expensive educational gadget,
and we are unable to supply, acccp'ablc answers.
While it may be true that.many of the current
educational materials tend to lagk any firm philo-
sophxcal or pedagogical basis other thaman cmpl}af
sis on the motivational aspect of “calculator use,
- it is-also true that the ma_)orlty of these materials -
do contain a few, sometimes Very few, §ood
activities—or at least tBe basm for some good ones’
when reworked. N s
While working with tcachers in Minneapolis’
St. Paul, I have fourd it helpful first to establish
a schemc for categorising the différent tfpes of
_ calculator activities which at the same time relates
these activities to the school curriculum. The .
scheme has been particularly useful for assessing,
the potential contribution of published materials
and identifying areas which nced development. .
(Egr an alternative list of categories, see [3].) The
placcmcnt of a particular calculator lesson in ane
or more of the categories is based on the purpose
of the acnvuy The categories are not intended
to be distinct or to-represent disjoint sets, but they
merely “provide a structure for thir.king about
-calculator activities: one should not get hung up
on whether a particular activity belongs, say, under
patterns or .exploration. A consideration of these
categories should also enable a teacher to provide
some balance in types of use. The category new/
venewed content is included to provide an opport-
unity to consider curricular changes or the re-
newed emphasis which might be expected in
school mathematics because of the availability of
.calculators and computers. *
" The examples below come from a varicty of
areas and are only intended to be illustrative of
the typcs of activities in each category. .

]

Calculat:ons .

This is rcally the most obvious category, and it
is usually casier to describe it last after showing -
examples for each of the others. It is often the case
that mathematical ideas and procedures can be
best “illustrated with small, easily handled, num-
bers—hence it may not be necessary or-even des-
irable to changc this just to make use of a calcu- .,
lator. It is important that we identify situations.
where the contribution is ‘real’ rather than forced.

Onc_example;,” for which the calculator’s role is
primarily for doing the arithmetic. is in working
with the formula for the number of combinations
of a things takex 7 at a time. We are often forced

131(52—13)! -

This may bc pretty unsansfygwg—~and pupils may
have little fecl for the relative sizc,of these numbers.
- Do you? Guess which of the above you think is
vlargcr tand how much larger) and then check
with ‘your calculator. The calculator does not
remove the need to be able ’io work with factorials

-

" and to be able to reprcscnt tht expansion in

reduced form, as 324 would involve a lot of button
pushmg and may overflow the'machine. However,
‘the calculator does remove, the computational
drudgery involved in multiplying many numbers.
Thes answ." s to the two exercises’ are 2. 598,960
and 635,013,559,600 respecnveﬁv, and the second
is conmdcrabjy larger. Does this surprise vou?)

Another evample involves' the solution of trig-
onometric equations. If the equation has the
unk*xown in the denominator, cg.,

", tan 63°=22/x,

solving for x requires division by a four or ﬁvc
place decimal, usually tak&n from a table (or with

" a shrewd ‘manocuvre, multiplication by a four or

five place decimal). Since the emphasis is really
on setting up the equation and using the appro-
pnale tngonometncal function, the calculations
invariably end up getting in the way of the straight-
forward ideas. Examples from trigonometr\' really
require little discussion as it is readily apparent.
that for such things as bulldmg a table for sketching
a rcasonably accurate wicture of the graph of the
sine or cosine functions, and for applying the sine
or cosine law, the calculator can be an invaluable
aid. The availability of the calculator als0 suggests
that table-reading activities generally included in
“certain mathernatics courses can be considerably
reduced.

An entry under calculations has the characteristic
that its primary purpose is to remove comput-
ational drudgery and the actual input or output

¢is not intended to demonstrate or reinforce con-
cepts or have a strong application or protlem-
solving emphasis. (In the latter cases the activity
falls into onc of the other categorics.) The need
for including this category will become more

apparent when the examples for the others have _

becn prcscntcd It will also become apparent that
“the catcgoncs-varc in fact somewhat hicrachial,
as it is generally the casc that the calculational
aspect of calculatpr usc will generally be a sec-
ondary purposc in activities listed clsewhere.

Remember that the key element in dctcrmmmg

where a paruculnr activity or lesson fits in the
scheme is in terms of the primary purpose of the lesson.

»
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Patterns

This may well be considered a part of renewed
content or a type of exploration. However, since it is
considered to be an important mathematical
activity in its own right and a uscful skill for
solving certair types of problems and for, lecarning

new mathematics. it is listed as a scparate item.

In this way it does not get slighted or lost. Many
of the articles and booklets which promote the use
of calculators make a big point of emphasising-this
activity; however. if one looks carcfully at the
situations which are described, one finds that
typically they tend to emphasise the generation of
easily obscrved patterns, as opposed to generating
output which then requires some study and testing
to find a pattern. Thus, one might wish to divide
pattern activities into pallern generation and patlern
searck. Bogh have a role, but unfortunately the first
is often left without taking full advantage of the
setting. Consider the following. quite common,
examiple.

Complete the following.
37x1x3=
37x2x3=
37x3x3= -
37x4x3= .
Is there a pattern? Use the pattern to complete the rest

2

of chart. {And the children are asked to find the

results up to 37 x %% 3.)

-
While this might be interesting, the situation as
given does not go anywhere. The pattern is obvious
and one merely writes down the triples. Children
at an ecarly level catch on verv 1uickly and com-
.plete the items without much tuought. When ¢he
patterns are of such an gbvious nature, one nceds
to ask how the situation can be used to promote
mathematical thinking. One natural exterision is

- 1o ask the chiidren to try to figure out why it works

In the example the key is to notice that 37x3
=111. (One can extend this same example to more
of a pattern .search activity by asking the child to
try to figure out the pattern up to 37 % 60 x 3. In this
case they will have to try to figure out how the
pattern seems to change in each decade. and -t
what point. A pupil workshect and accompan..ng
“feacher notes for the extended calculator activity
was produced by a team of Minncapolis teachers
and included in a set of materials called Calculator
Cookery. [4)) ‘

If the pattern lessons are to be primarily pattern
search, then the pupil should be involved in a
searching and testing situation, that is he should
be required t6 study the various’ examples, to
hypothesisc a relationship, to test or verify the
relationship. to modify on the basis of new inform-
ation, eté. Esamples of this type of activity abound
in the literature, but are probably not as prevalant
as the first type. Here are three examples which
_illustrate the type of problem-solving thinking
which must be employed to find the pattern.

). Use the caleulator to find the recurring cycle of digits
Sfor1/7,2/7,3/1, . .6/7 (and 7/7). What do you
observe? Tty the set of fractions with denominator
13. Again, what o~ you observe? The decimal
expansions for some fractions like the Tths are ¢yclic
in the sense that the repeating digits appear in the
same sequence, but with a different initial digit. The
set of fractions with denominator 19 are also oyelic.
Knowing this use your calculator to find the decimal
expansion for 1/19. . -

(For a discussion of methods see several MT

articles culminating in [5]}.)

9. Generalise: 3=
134-23=
134234-3%=

> .’..

134234334 ... +n¥=
Use your calculator to test your generalisation fer
n=8, n=10.

3. The question to”be investigated is: If a is assigned
an integer value such that a is odd and greater than
1, is it always possible to determirie integers b and ¢
so that a®4-b*=c??> Use the following examples.

1. 3-br=¢t 1. 524-b2=ct

2. 3244252 2. 52412*=132

3. 944%=5? 3. 254122=132

4, 9416=25 4, 254144=169
Try these.

1. 7Bdbr=c 1 94 pd=c2

2. ' 2. .

3. 3.

4. 4

When you find the number write out as the examples.

1. 1124h2=c? 1. 1324 p2=c2

Do you see a pattern? If so test your conjecture with

these. '
373 4-bt=c? 993 4-bi=c?

In cach of these examples, the patterns are not so~

obvious. While the role.of the calculator is still

primarily one of pattern generation, the major purpose :

of the activity is the search itself. {Even in’ the
decimal expansion for 1/19 the task is not trivial
as the search involves looking at sets of digits, not
just the single digit. Try it; the cycle has 18 digits.)
Oneé further point should be made. There are
also many pattern search type of activitics which
lead to the discovery or.generalisation of a ‘main-
stream’ concept or important and/or useful
raathematical relationship. These will generally
be listed under the category of expioration if they
have as a primary purpose that of the leaming of
the specific piece of mathematics and the pattern
search activity is of secondary importance. This is
illustrated in the first example of the next section.

Exploration )
This is probably the most fruitful and wealthiest
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area for calculator activities, particularly in terms

- ‘of the usual mathematics curriculum. The main
feature of activities which are to be placed in this
category is that the pupil uses the calculator to
* generate output with the purpose that the output
will demonstrate a concept or relationship, or that
the actual generation of the output will se. ¢ to
help reinforde a concept.which has been taught
previously, or that the output will assist in solving

a mathematical ptoblem. Thus the category reaily
has three somewhat distinct types of examples.
The example of exploration for concept-
demonstration is of decimal multiplication.
The traditicnal approach is to show how the
multiplication is done by a number of examples
in which the decimal fraction is first converted to

e the standard fraction representation with denom-~
) inators of ten, hundred, etc. The examples are used

to justify the rule regarding the placement of the

decimal point (in terms of the number of decimal

places in each of the factors). Thus, the usual

with decimals. For some reasun, some pupils
overlook the justification stage and tend to con-
centrate on memorising the rule, leading to
errors later on when practice with decimals
involves mixed operations. An alternative app-
roach using the calculator is given below. The
pupils are first asked to look for a:pattern when
the calculator is used to do some calculations the
pupils have no¢ yet learned how to do { discover a
rule), theh justify the result with a few, well-
chosen examples, and then practise. The emphasis
4s on finding the pattern and then asking why it
works (very much along the same lines as that
_ reconmended as the extension to the common
: pattern generation activities described in ,the
previous section). Also, in this example, students
are asked to coricentrate immediately on what is
to be learned, rather than first look at a number
« of seemingly less related examples and wondering

where the lesson is going.

Use your calculator lo find the products:
e o 62x02
N 9-8x06
3-2x08
2.2 x64
0-02 x0-34
2-11x1:22 -
0:72x06
. 0-026 x 0-003
(Approximately 15-25 items, none with a zcro as a
trailing digit in one of the factors, or a 5 us a
trailing digit when the other factor has an cven
number as thie trailing digit.) .
What do you observe about the placement of the decimal
~—  point in the answers?
(Now the class can discuss any observations and

pedagogical sequence is first to justify the new
rule and then actually to implement in practice

come to the generalisation. The teacher now asks
why this is so, and the justification should .be
readily apparent from a few examples with
fractions which illustrate that tenths times tenths
gives hundredths, tenths times hundredths gives
thousandtl.s, etc.)
Now try the fellowing with your calculator :
2-44x0-35
126 x0-45
3:60x0-40
{5-10 items which involve zero or 5 as a trailing
digit) .
Does your rule still work? What’s wrong?
(This is used to help reinforce the idea that the rule
still holds as the calculator suppresses the trailing
zeros in the result. Also this reinforces the idea that
two-tenths is twenty-hundredths.)

When a particular piece of mathematical content
has already been introduced and the calculator
activity is planned to provide an opportunity to
practise or apply what has been learned. this can
be thought of as exploration for concept-rein-
forcement. An example of this type of use can be
taken from elementary algebra and involves the
evaluation of a" for various non-negative values of
a. takirg n to have integer values from say | to 10

., or | to 20. This can be given after the pupils have
been introduced to the idea of what is meant by
an exponent, and used to reinforce the idea that
the exponent says how many times a particular
number is to be used as a factor. If pupils are told
to consider a=0, 0<a<1, a=1, and a>1, then
some important relationships are also reinforced
(or demonstrated if the ideas are:new); in parti-
cular the faci that for 0<a<1, a gets very smali
quite quickly, even when a is close to 1, say 0-9.
This reinforces (or calls.to one’s attention) the fact
that when one multiplies two proper fractions, the
result is always less than the smallest fraction.
The calculator use in this lesson illustrates the
dynamic nature of the result—one of the real
advantages of using calculators. Of course, the
same example can be used to illustrate how quickly
the result grows for numbers greater than 1. (Com-

. pare say a=4 with a=8; the successive terms for
the second are not just twice the first.) Thus the
activity can be used to provide an interesting first
exposure to the exponential function.

Another example of exploration for concept-

reinforcement is the calculator game Wipeout -

(described in the Arithmetic Teacher, November
1976, p. 516). This is included here to illustrate

that there are some calculator games which havé’

the potential for a very real contribution to the
-~ learning of mathematics. The game involves
cntering a given number, with all digits different,
and then asking the pupils to usc subtraction to
remove a specified digit (i.c. replace it with a zcro)
without changing-any other digit in the number.
For example, if the game is used to reinforce
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concepts of place value, one might start with
somcthing like 834-562!9 and ask pupils frst to
remove the 2, then the 4, and so on. (This rein-
forces place value. since to remove the 2 requires
the subtraction of -002. However, note that this
should not represent the only place value practice
as it could become a rote activity of the form:
count the places, use zeros and subtract.) As
indicated previously, there are many games of this
type, which can be both motivating and also
contribute to the learning of mathematics. How-
ever, major consideration should be given to the
latter point in deciding whether or not to include
such an activity.

Exploration for problem-solving is gener-
ally concerned with questions of the form “what
happens if”", and examples for this category
abound in situations which involve formulas.
(Formulas are not the only examples, but these
casily illustrate the ideas.) One which is both
motivating and interesting is to consider the
formula (function) which relates temperature in
degrees Celsius to degrees Fahrenheit,

* F=}C+32.
One can ask the question: When, if ever, are the
two readings the same? After trying a number of
values for C, and looking for a trend or pattern,
which is the way one would expect pupils 4t an
carly level to proceed with the relationship as given,
the pupil should finally arrive at the result,—-40°,
(Of course at later levels one would expect pupils
to recognise that this problem is readily solved
without the calculator by solving an equation.)

Other interesting explorations for problem-

solving can be described for such topics as the

pythagorcan theorem: what happens with different
shapes on the sides and hypotenuse; arca and
volume formulas: what happens if a certain dimen-
sion is halved. doubied. tripled. ctc.; the classical
1 penny for the first day and double your salary
each day for a month; and so on.

Additional explorations can be found in number
theory activitics as well as many of the classical
problems ‘dealing with series and sequences.
Examples from this single category could well
make up an entire article.

Applications-Consumer

Since the applications area is so important if we
are to produce some level of basic numeracy
(ability to use mathematical ideas and processes),
it is useful to separate the applications into two
different sub-categories. Consumer applications
are thosc applications which have immediate
implications for the individual in everyaay living,
e.g., comparative shopping; personal consumption
of water, gas, and electricity, constructing or
making something; etc. Social applications are
more oriented to decision-making activities with
implications for benefiting society as a whole:
population growth; conservation of res~urces
(water, fuel, minerals, etc.); health and health
care (c.g., smoking): inflation; and so on.

It-is not dif sult to find ideas for consumer
applications—the real problem is in presenting
these in a realistic fashion and in emphasising the
role of mathematics in decision-making. A nice
example of an activity (problem) which is stated
much along the lines as it might occur in real life
is in the booklet by Dolan [6], p. 38.

PICNIC HAMS

As chairman of the food committee for your club picnic,
it is your job to purchase the ham for the sandwiches.
The committee phans to make two sandwiches for each
person and figures 2 oz. of meat per sandwich. Assume

that the bone in the shank ham is 20%, of the total
weight, and that there are 35 peaple in the club.
Which ham or hams would you buy to make the sand-
wiches for the least cost?
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Another. example is to use selected formulas to
calculate the cost of running certain electrical
appliances (or for lighting). The exercises can be
extended actually to ﬁgurmz monthly bills, using
the graduated scale of pricing which is used by the
electricity boards, and finding out how one rmght
save by conserving. (What does it cost to leave a
heater on all night instead of for only one or two
hours in the morning? What would be gained by
changing all non-readmg lizhts in your home to
25-watt bulbs?)

Applications-Social

While it would be nice to include two or three
examples in this category, one problem is that they
gcncraily take some space to develop. Hence I will
just describe briefly some of the characteristics of
social application lessons, As indicated previously,
one key feature of most of such lessons is that the
pupil should uce the mathematics of a given unitor
course to assist in decision-making or to compare
alternative solutions. Some lessons may not lend
themselves to actual decnsxon~makxng but rather
enable the pupil to investigate some real world
phenomena of an impersonal nature—e.g. develop
equations to predict future times for track and
ficld events, look’ at the manufacturing of some
product, etc. Howcvcr, it is problems of the
dccmon-makmg typc which are sorely lacking
in most of the usual textbcok apphcanons, the
pupils are asked to use their mathematics in what
appeass at first glance to represent an application,
but it goes nowhere or has no apparent purpose.
We need to motivate pupils to want to use mathe-
matics and to recognise the value of using mathe-
matics to assist in making decisions. For cxample,
why should one support. or vote against. “ban the
can’ legislation (legislation concerning di-posable

bottles-or cans)? What about the use-of certain -

pesticides? Once otherfeature of social applications
is that cacls usually involvesieither a big problem
(for which one nceds a rcasonable length of time
for study) or consists of a number of rclated

exercises, instead of the typical single exercise
which culminates in a somewhat open-ended
question of a ‘why’ or ‘what’ nature. Lessons coutld
be based on such topics as wildlife management,
camera lenses, predicting birth rates. sound. etc.
(Lessons on these four topics appear in [7j.) The
main emphasis is on applung mathematical ideas
to real world situations. They involve either some
aspect of decision-making or the study of some real
world phenomena, and any mathematical results
need to be interpreted back to the real world. This
is quite different from such questions as ‘“How high
a pile would we have if all the McDonald ham-
burgers sold to date were stacked one on top of
another?”’; at best this is an activity for looking at
large numbers (number awareness, exploration)
and at worst it is merely a button pushing activity
which is probably a waste of time.

New/Renewed Content |,

As indicated earlier, this category is included
since it is related to today’s technology—and while
some of the topics do not necessarily involve the

.actual use of the calcuiator on any regular or
Y

integral basis, they"do in facr relate to the effective
use of this technology. The key topics are esti-
mation, errors, algorithms and iteration, and
mathematical modelling. (For a discussion of some
of these ideas see Michael Girling's Towards a
Definition sof Basic Numeracy [8].) Each of these
topics easily warrants an article and it will only be
possible to touch briefly on some important ideas
here.

Estimation is probably one of the easiest to con-
sider, since it is alrcady a part of today’s curri-
culum. Current practices in many textbooks tend
to confuse estimafion with rounding. off and treat
them as if they are thc samc thing. Even worse,

pupils are typically told what to round c off to, so

“they trcat this as another mathematical proccdurc
to be implementcd when instructed to do so. This
results in a failure to identify the procedure as an
aid in checking results—and the pupils typically
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ask what they are supposcd to do. With the avail-
ability of calculators, the skill of cstimation is even
more important, but we no longer nced the pre-
cision in our cstimates which was often demanded
for checking hand calculation. In fact, to check a
calculator result onc is primarily concerned with
orders of magnitude and hence the only real need

- is the ability tc do single digit arithmetic and work

with powers of 10. To cstimate the product of, say;
567 x 6324 (for the purpose of checking a calcu-
lator answer) we need only think of this as 500 X
6000—that is, we need only consider the leading
digit (rather than round), a much easier procedure;
the product then becomes 5x100x6x 1000, or
5% 6% 100,000 or 3,000,000. Pupils will soon
notice when applying this relatively straight-
forward algorithm that the resulting estimates are
often unsatisfying. This then motivates the nced
for rounding off. {On the other hand, even if a
pupil is unable to round, the leading digit algo-
rithm is still a useful procedure.) After learning to
round off, the pupil may still wish to sharpen this
skill, and use some number relationship notions
and common sense to obtain better estimates. For
example, 65X 14: using the initial algorithm we
. estimate 600; using rounding off to the leading
digit we estimate 700; using some number sense
and - thinking about the problem we see we can
consider 65 x 10, or 630, plus 60 x 4, 240, or a sum
of about 900 (and the correct result is 910). Notice
that with this thre§ stage approach, the pupil is
able to estimate at least the lowest level, and the
skill is developed as one feels the need.

The inclusion of the topic of errors should pro-
bably begin in the primary school. In general this
topic can be subdivided into two main categories,
one dealing with the concepts of error analysis—
the mathematics of errors—and the second related
to ideas of checking answers through estimation
and on the basis of the reasonableness of the results
in terms of physical reality. These concepts are not
new, and in the past textbooks have attempted to
provide some instruction on the topics. However,
it seems that pupils today do not have much of a
feel for errors and it would be worthwhile taking
another look at what might be done. At the very
least we need to include more exercises of the type
where an answer is also given.and the student is
asked to determine whether or not the result is
reasonable (and why or why not).

The mathematical notions of relative and absolute
errors should probably be introduced -after pupils
have some facility with fractions. Pupils should
have an idea of the importance of these ideas and
how actually to caiculate them numerically’ That
is, the pupil should be able to tell you taat dropping

the 7 in 0-0067 is a large-relative. error,.while.... .

dropping the 7 in 0-6007 is small..(However, we
do need to be careful about “large” and *small”
as the context of the problem may demand a
certain precision.) For the two settings the absolute
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crror, in terms of dropping the 7, is the same.
Notions of errors of mecasurcinent, precision and
accuracy also fit under this topic.

The concc;. of algorithm and the use of
iterative procedures arc basic in today's
computer world. More nceds to be done with these
ideas throughout sccondary school mathematics.
Pupils need to be given the opportunity to design
their own algorithms or to modify existing
procedures to do new tasks. In order to develop
some appreciation of what an algorithm is, they
should be provided with situations which require
the following of a new algorithm. One interesting

.and useful algorithm s -biscction, for finding or

approximating zeros of polynomial functions; this is
definitely within the'grasp of pupils at an early point
in secondary school mathematics. The procedure is
a natural one for'calculator or computer use. (Since
this is another of those topics which could be the
focus of an entire article, the reader is directed to
two interesting papers, [9] and [10].)

The final topic is that of mathematical
modelling. This involves notions of translation,
but even more important, the development of
equations if you will, which can be used to explain
known phenomena as well as predict. The
availability of calculators and computers will enable
a student to work with and modify models; such
activity has been hampered in the past because of
the excessive calculations usually encountered. The
NCTM 1979 Yearbook, Applications in School
Mathematics, treats this topic in some depth (sce my
chapter).
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Every now and then a glimpse is caught by people
outside the field, of how much more there is to mathe-
matics than school arithmetic — it is art and science and
it is creative, as well as logical and practical. And so it
is also true that there is much more to arithmetic than
computation. Since most people’s math education was
nearly all computation, most people are unaware of this
broader defipition. and the general public continues to’
demand that children spend most of their time learn-
ing the same complicated computational routines that

they themselves were forced to learn during their elemen-

tary school years. in fact, this is now a waste of expen-
sivu teaching resources. From now on, repetitive drill
and practice with computation techniques will be as
worthless as they are demeaning. it should be clear
that all that time on computation denies teachers and
children a chance to participate in other areas of mathe-
matics which are less mechanistic, more creative and

far more practical.

in 1972, electronics companies introduced the
four-function hand-held calculator at retail prices
around $200. By 1976, the price of a calculator, now
a more durable model, had dropped to about S10. It
became an invaluable tool in business and at home. Its
portability and responsiveness, as well as the ease with
which it can execute computations, made its official
or unofficial appearance in school inevitable,

Reaction to school use of calculators was emo-
tional and divided. People favored total prohibition;
most who could countenance it at all favored control-
ted and restricted use from fourth grade on, with lit-
tie if any use in kindergarten through third grade.
Very few people advocated unrestricted use of the
smachines. All in all, the calculator is having a hard
time making its way into the elementary classroom.

A Y

The reasoning of the prohibitionists seems to us to
be confused, short-sighted, or uninformed._Qur guess is

that, not having used calculat )rs themselves to learn arith.

metic, people feel anxious about allowing their children
to use them because it seems to invalidate their own hard

n

wrrk in learning arithmetic. It is our intention in this pa-
per to dispel anxieties. Perpetuated and unsupported
tears become myths. The following are some of the

most common myths about using calculators with
children. o —_—-

1. CHILDREN WILL BE HANDICAPPED BY THEIR
DEPENDENCE ON CALCULATORS.

a. Should we give children crutches when they don't
need them?

The calculator has been called a crutch primarily
because it enables people to do computations that they
are perfectly capable of doing or leai ning how to do
without a calculator. We, however, have no objection
to this use of calculators because valuable time will be

most children leave elementary school with at least one
of two severe mathematical disabilities caused by the
current emphasis on computational facility. Calculators
can be a legitimate remedy for either of these. .

The most common har.dicap is the inability to solve
simple real world problems, such as finding averages or
selecting necessary quantities of paint. (1) The reasons
for this handicap are not very complicated. Children
spend 75% of the tirst seven years of elementary mathe-
matics instruction learning and relearning the complicated,
step-by-step procedures {called algorithms) necessary to
do an addition, subtraction, multiplication, or division
computation quickly and accurately. Then they spend .
the tiny remainder of their math time trying to learn a
myriad.of other things, including measurement, decimals,
estimation, geometry, logic, statistics, real world appli-
cations, mathematical games,-other-base numeration Syss
tems, and set theory. The traditional high griority of
computation results in a population which is able to do
a computation when specifically told which operations

_to perform on which numbers.  Yet these people fack

other mathematical competencies such as logical reasop-
ing and the ability to apply that reasoning to the solving
of problems. {2) In today’s perspective, this deficiency is

LER]
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8 serious handicap. A ten dollar machine can perform
most ordinary computation, but society needs people

who are able to clearly define a problem dand a method
of solving it. . ‘

The second handicap is the inability to do an arith-
metic computation even when the numbers and opera-
tions are specified. For example, some children cannot
successfully compute 346 x 28, 1869 + 72, 4273 —- 986
or 112.32 + 89. These children are doubly disabled if, as
is often the case, they also suffer from the first handicap.
Calculators offer these children a powerful remedial aid
or crutch. At least, if they are taught how to manipulate
the calculator they will be able to compute.

For chlldren 3 calculator becomes a vehicle for communicating
sbout numbers Here, two 2nd graders from Denton, Texas,
share a number dnscovery {The boy on the left speaks Iittie
English; he’s from Mexico and has been in the U.S. only a few

weeks.)
[
- v b. What if a child needs to do a computation and
S doesn’t have a calculator?

Consider what happens when you need to do an ex-
act computation and you have no pencil and paper. Ei-
ther you borrow them, or you save the computation until
you can get your own pencnl and*paper. Calculators are
now so inexpensive and ubiquitous that this analogy with
pencil and paper is reasonable.

Certainly all businesses which need to do any calcu-
fations have calculators available. Even street vendors use
them. ft is just not efficient to do otherwise. On the other
hand, if exactness 1s not required, then an estimate 1s need-
ed. For this reason, we believe *"at the teachmg of estima-
tion in all the grades needs to b given a high priarity.

¢ wnat will a child do when the batteries die?

New types of calculators ise far less energy. Asare-

sult, calculators are available that have a lifetime of 10, 000
. bours. At five hours per day of continuous use, seven days
__aweek, that amounts tg more than five years’ time, More-

over, there are now slim, portable calculators with alarm

clocks and stopwatches attached that are never turned off.

The batteries are simply replaced on a regular schedule

about once a year. This we feel is little maintenance for
such a useful tool,

Msmtement is usually based on the miscor: p-
tion that a child has to, or wants to, use a calculato as

2. CALCULATORS SHOULDN'T BE USED BEFORE
FOURTH GRADE.

2. Young children’s minds could atrophy if they use cal-
culators instead of thinking.

First, using a calculator does not diminish thinking. In
arder to enter data into the calculator correctly, students must
think carefully about the related problem. 1 his has a higher
cognitive demand than does manipulating paper and pen-
cil algorithms by rote.

Second, this statement assumes that the brain is a
muscle that needs to be continuously exercised. Conse-
quentlyi it is thought that doing complicated algorithms
is good for the mind, just as lifting weights develops the
bjceps or running exercises the heart. However, the brain
is not a muscle — it thinks whether we are conscious of
thinking or not {for exampie, when we are dreaming).

We realize that practicing computation c¢an result in
faster and more accurate computing; but there-isvirtaally
no enhancement-of-other mathematical abilities as a di-
‘réct result of computational proficiency.

Further, it is commonly believed that whatever is ~
hard to learn must be good and valuable. and what is
easy to learn probably isn’t valuable. We do not believe
this. 1t is true that people value those things in which
they have invested a great deal of time and energy. Bug
if the same things can be accomplished more effciently,
those long hours of work could be used on something
else. Now that we have calculators to do the routine
aspects of mathematics, it will be more important than
ever to invest time and energy teaching creative thinking.

e T
e

b. There are no good learning activities with calcula-
tors for young children.

an adult does — as a fast and accurate computation ma-
chine. If you hand a calcutiator to an adult who has ne-
ver used one before, after a very few minutes of routine
manipulation that adult is bored. The feedback the adult
receives is nothing new. This is not the case with chil-
dren. For a child, a calculator is a responsive toy that
almost says, “Play with me”. Because of this our devel-

opment group, EMCz, has devoted four years to research-
ing ways to use calculators with children of al! ages. {n
kindergartien and tirst grade, before many children have
mastered the fine motor skills necessary to write num. _
bers with ease, a calculator makes it easy for them to
communicate with and about numbers. This is impor-
tant. Numbers become things with which they can do
enjoyable things. The calculator is a writing instrument:
for them and can help make numbers more concrete and
less abstract. At this early age, children enjoy count-

ing with a calculator by 1's, 2‘s, 3's . . . . Counting, then,
is a succession of ‘‘one mores”, ‘‘two mores’’, ““three
mores’’, and so on. Thus, beginning even in kindergarten,
counting can be taught as a foundation for addition and
multiplication, rather than as a rote chant. in grades twvo
and three, the calculator can help teach the similarity
between one-digit and muiti-digit multiplication. The pa-
per and pencil ways of doing 15 x 8 and 15 x 24 are dit-
ferent, whereas the calculator methods are the same. in




these grades, the connections between subtraction and di-
vision can be elucidated with a calculator. The relation-
ship between an operation and its inverse can also be ef-
fectively demonstrated. With practice, prablems invol-
ving large numbers may be tackled. Up to now this has
been unrealistic. Finally, time can be devoted to solving
problems — finding diverse solutions to one problem type
as well as diverse problems that are soived by one solu-

. tion type. In other words, various problem solving tech-
niques and problem types can be examined if less time
needs to be spent on pure computation,

Some educators argue that children have to‘under-

- stard the concepts of addition, subtraction, multiplication
or division before they can be allowed to use a calculator.
Here again is the misunderstanding of what it means to
*yse a calculator’’. We have noted several ways in which
the calculator itself can help teach understanding of con-
cepts. The calculator is not just used to apply concepts,~ —
it is used to understand the coricepts. Understanding is

|1 -——especially important now that it is no longer necessary

to fogus solely on carrying out the operations.

Calculators might éven allow teachers to look care-
fully at their children’s private use of arithmetic and at
the informal, intuitive strategies that children have in-
vented or found outside of school. Recent in-depth in-
terviews with children indicate that they make use of a
rich repertoire of mathematical techniques to solve prac-
tical out-of-school math problems. {3} For example,
counting on fingers to solve addition problems is one such
technique which is, unfortunately, discouraged by most
teachers. Few, if any, of these techniques were learned
formally in school. These informal partial understandings
need to be given validity by teachers and_parents-if-arith-——"

____matic-is-to-bereatlyuseful to children. While children do
use their incomplete understanding to do school math,
it is rare that children‘make out-of-school use of the com-
putation techniques they spend 75% of their in-school
math time mastering. 1f calculators were to be adopted
by teachers and parents as necessary learning devices,
children would have a tool they could use easily, both
in and out of school. 1t would connect in-school math
with their out-of-school math. This could increase the
relevance and decrease the drudgery of mathematics
for children.

-

3. WITH CALCULATORS AVAILABLE, DECIMALS
WILL BE EASY TO TEACH IN THE PRIMARY
GRADES. )

A calcylator can display to any curious child num-
bers like 0.333 and 1.5. Thus, children will prohably
ask teachers questions about such numbers and perhaps
be more motivated to learn about them,’

Also because operations with decimals resemble
operations with whole nuinbers, they probably will be easier
1o teach them operations with fractions.

However, the part-to-whole relationship is easier to
visualize with fractional notation than with decimal nota-
tion: 1/3 represents one part of a whole which has been di-
vided into three equal parts. The decimal equivalent, 0.333,

* is not easily interpreted as the same thing.
Ll

. 3

Further, increased computational facility will not neces-
sarily enhance understanding of decimals. Ordering of deci-
mals, for example, takes a good deal more understanding

of place value than most primary-age children presantly
have. {Which is larger: 0.9 or 0.888?) Even with caleu-
lators, teaching decimals in the primary grades will require
new materials and careful thought.

4. WITH CALCULATORS AROUND, THERE IS NO
MORE REASON TO TEACH FRACTIONS!

Simple fractions, which become a part of our every-
day vocabulary very early, are used quite often in our
society and probably will continue 10 be used. “Half of
the pie’’, ""a quarter of an hour”, or “a third of the money"’
are expressions which are not likely to disapoear with in-
creased use ot decimals. Hence, even in the elementary
grades, we will need to maintain the skills of recognizing
writing and ordering simple fractions. _ _ -

S

“in algebra, when one is solving equations, computing
with fractinns is as comman as camputing with integers.
Operations like addition subtraction, multiplication and
division with fractions could be performed more easily and.,
more accurately on a calculator. However, students will
still need to know when to operate on fractions, which
operations are to be used, and how to manipulate the
calculator to perform the operations.

It is true that most calculators display non-integers
{like 2-3/4 and 1/6) as decimgals. However, there are
calculators that display and compute with fractions in
either decimal or numerator-and-denominator form. If
fractional notation s really important to the general
public, all calculators could be manufactured with this

RS
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5. CHECKING PROBLEMS YOU HAVE DONE BY
HAND AND DOING THE COMPONENT PARTS
OF A LONG PAPER AND PENCIL ALGORITHM
ARE VALUABLE USES OF THE CALCULATOR.

Using calculators to check hand computations
teaches the child little if anything about mathematics.
It does over emphasize the importance of the one right
answer. But it reveals no additional information about
the operation, especially since the calculator does not
demonstrate to the user the component parts of its in-
ternai algorithm and the role that each plays. This
repetitive process will only let students know if their
computation is accurate. If the'intent is to increase ac- ~
curacy, then problems should be done on the calculator
at the start and hand computation should be eliminated
altogether.

Similarly, using the calculator to perform the com-
ponent steps of a paper and pencil algorithm generally has
fittle instructional value and is certainly not efficient for
computation. |t is somewhat like using parts of a good
watch to make a sundial. Those who encourage children
to use the calculator in this way with the division algorithm
argue that understanding of the division process will be en-
hanced. However, simply ising the calculator for the inter-
mittent multiplications and subtractions which occur in the
long division algorithm will not necessarily illustrate the
process of partitioning a set of objects, nor will it reveal the
place value system of numeration that helps explain why the
long division algorithm works. .

6. THE STANDARD COMPUTATIONAL ALGORITHMS
ARE BASIC AND IMPORTANT AND SHOULD ALWAYS
BE TAUGHT.

s

Full Tt Provided by ERIC.

O () Ginsburg, Herbert; “Tne Psychology of Arithmetic Think-

ing”’. The Journsi of Children’s Mathematicsl Behavior,
Speing 1977, pp. 189, .

.
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. Fae hundreds of years around the time of Christ, peo-
- ple used the Roman numeral system of naming numbers.

- Anybody who needed to multiply whole numbers greater
than one hundred had to translate the problem from the
Rornan notation onto an abacus-like device, do the com-
putation on the abacus, and carefully transiate the result
back to the Roman system. This method was ingenious i
but time-consuming to use and difficult to learn.

) When the Arabic numeral system {our present base-10 .
placevalue system) became known, the computational algo-
rithms became simpler to learn and use. Indeed, as we men-
tioned previously, most children can use our computational- -~
algoritms reasonably.well by-the-tirié they leave eighth grade..
e -——gut the primary purpose of these algorithms has always been
to get fast and accurate answers t0 quantitative questions.
The calculator is a better algorithm in this sense than are any
e of the paper and pencil algorithms we now teach, just as the
place value numeral system was better than the Roman system.
The calculator is faster and more accurate and it requires less
effort to learn. Some of the algorithms like the long division
or long multiplication algorithms are more difficuit for young
. children to learn than the actual concepts of multiplication
or division. Consequently, computational facility comes
only after a number of years of learning and relearniing. But,
most important, there is no indication that facility with an
slgorithm enhances understanding of the related concept.
4 Listen to a child or to yourself as you go through a multipli-
. cation procedure to do 365.x 748: “Eighy fives are forty,
: put down a 2ero, carry a four; eight sixes are forty-eight and
the four makes fifty-two, put down the two, carry the five,"”
- _ete., etc., ete—This-issimply arecitation of a previously
memorized algorithm to do the multiplication. in fact, the
purpose of memorizing it so carefully is so we do not have
10 reason our way through the algorithm each time we use
- . it. That's why algorithms are useful. We drill them into
ourselves (and our children) precisely because we want to be .
able to complete the computation quickly and iccurately -
. with as little conscious effort as possibie. However, most
. ’ adults could not explain why and how the procedures work.
Thus, if they forget one step in the procedure, they may =
have sufficient understanding to reconstruct for themselves
the procedure needed. .

We must conclude then that what is basic and im-
portant is understanding of the problem and possible
ways of solving it, rather than understanding of the
specific algorithm. 1f computation is necessary for deter-
frining a solution, then a calculator can and should be

C N

used. ’ -
Co:.clusion :
. We have stated some of the common fears that pre-

vent school use of calculators and we have mentioned a

. number of positive ways:calculators can be used in the

primary grades to teach new concepts rather thar simply ,

to reinforce those already learned.

* No longer does arithmetic have to be synonymous

with paper and pencil computation. 1n fact, alt hand com-

putation probably will be replaced by calculator compu-

. tation soon — if not in one year, then in fifteen years.

The implications of these facts are that teachers need to

accept the reality of the calculator and to change their

emphasis and focus. Since it is knowr: that computational

ability is not closely related to problem-solving ability, (4)

. teachers have little to fear from using the calculator for .
- all computation, and good reason to look forward to

devoting more time to developing other mathematics’

skills and abilities. '

.

{4) Begle, Edward; “Some Lessons Learned by SMSG*'. The -
_ Mathematics Teacher, March 1973, pp. 207.214. ) o
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and is active in cnmputer and calculator circles in Oregon. — Editor

Usmg Calcralators for R

by JEAN B. ROGERS

Jean B. Rogers is a2 member of the Executive Council of the Oregon Council for Compoter Education

®
This unit is designed to present the user with information on how calculators can be used
in mathematical groblem solving methods. The two techniques mvo\ved are TRIAL AND COR-
RECTION and MAKE A TABLE, both easnly and.commonly. used. -
After completing this unit, the user: ) e =T
a) will be able to apply two speer_fn_e_q_problemsolwngmethods‘to appropriate problems

ill be aware-thata calculator is useful when these methods are applied to mathemati-
cal problems.
The unit presupposes an ability to understand what a square root is, and the abxlnty to cal-
culate simple interest. A basic four-function calculator is the onIy tool requnred
it is important to emphasize that the methods presented in this material are general prob-
lem solving metlgods and not restricted to the specific types of examples given.

CALCULATORS AND PROBLEM SOLVING )

A calculator is a tool that can increase the problem solving power of the user. There are
many techniques that are helpful when we approach a problem be it mathematical or non-mathe-
matical, and knowing these general methods increases the ease with which we solve the problem.
A calculator can make some of these techniques even better when we are working on a problem
involving numbers. '

TRIAL AND CORRECTION

One of the most commonly used problem solving techniques is called “trial and error”,
but to take a more positive approach let’s call it TRIAL AND CORREZTION. A calculator
makes it so much simpler to do the “‘trials” that this becomes a very efficient way to work out
a problem.

For example, let’s look at finding the square root of a number. Wé know that we can
find a square root by using an algorithm (a step-by-step procedure that will determine the result),
if § ‘we can remember it. For square root it looks like this:

USRS e

However with a calculator to increase 15 °
our power, we could take a different approach: 3 V 225
TRIAL AND CORRECTION. To do this we, 111
are going to use a machine with just the four ba- 125
sic functions on it. If yours has a square root 2 125

key, just ignore,it for now,

A way to find the square root of 3136: ("\V/3138) _
Choose a number, multiply it by itself, and if the result is 3136, that number is \/3136.

TRIAL NUMBER TRIAL TIMES TRIAL
¢ 50 : 2500 Too little
60 ' 3600 Too big
55 3025 . Too little, but close
**56 3136

. After each trial, { used the information yielded by" my multiplication result, either too
little or too big, to correct my old trial so that the next trial is a better one. Thus we have the
TRIAL AND CORRECTION method.

SR
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Reprinted by permission from Calculators/Computers 2: 19-21; March 1978.
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Use.the TRIAL AND CORRECTION method to find: the square root of 729
the square root of 42.25

V729 ’ : V42.25
TRIAL NUMBER  TRIAL TIMES TRIAL | TRIAL NUMBER TRIAL TIMES TRIAL
- <
f
MAKE A TABLE ‘

Another problem solving technique is to MAKE A TABLE, and this is also a place where a
calculator ¢an be helpful. Having a table is very beneficial when values are changing while a process
is being carried out, or when there are many values that need to be available for comparison. Calcu-
Iagng interest on a loan or a savings account is a good time to use this method.

i

Suppose | make a credit purchase for $70 and pay it off at $10 a month. Since | must pay
1%4% interest on the remaining balance each month, only the remainder of my $10 payment is cre-
dited to my account.

Month 1 Month2 Month3 Month4 Month 5 Month 6 Month7 Month 8’

Balance |$70.00 | $61.05 | $51.97 | $42.75 | $33.30 | $23.89 |'$14.25 $4.46

lqtere‘st 1.05 92 .78 .64 50 36 .21 07 d
Credited | 895 | 908 | 9221 936] 950 9.64 7 9.79 | ***+

to account ,

*#*+* [ a5t payment is balance plus interest.

From this table we see that it will take 8 payments to pay the $70 debt. By summing the
entries in the Interest row of the table, we find the the total interest crst will be $4.53.
“Make a similar table for payments of $20 per month.

Month1 Month2 Month3  Month 4
Balance | $70.00
;nterest i
Credited
to account

From your table you should find that 4 payments are required with an interest cost of
$2.48.

L34
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Make two more tables, finding similar data for a $70 debt if the
interest rate is only 1% while the payments are again $10 per month and
- " 420 per month.

o

’

Now make a summary table that shows the interest cost and number of payments for the .
four different circumstances we worked out above. This final table will givé you an easy way to

compare the data on the four plans.

a

Total Interest Cost

Number of Payments

$10 payments at 1%2%

$20 payments at 1%2% .

$10 paymentsat 1 %

$20 payments at 1 %

CONCLUSIONS

We haye seen-how a calculator can be used in two froblem solving techniques,
TRIAL AND CORRECTION and MAKE-A TABLE."Remember that the examples we
looked at are only a few out of the many different types of problems to which these
methods can be applied, and that there are many occasions when these techniques can
help people intredse their problem solving power. - -’

1
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Mini-Calculatofs And Problem Solving :
‘ Joseph J. Shields

. . Department of Mathemaiics ¥ .
L. . Missouri Southern State College . . ¢ LT
s Joplin, Missouri 64801 ’

During the past five years, one of the most wndely discussed topics at
any meeting where math educators gather has been the impact of the e
minicalculator on the classroom environment. “‘Do children become de- o ’
pendent ‘on’ calculators?’’ “How can calculators be used constructive-
. 1ly?’’ *‘Are calculators durable enough for classroom use?”’ . . R
University educators were not allowed thelr leisure at coming to gnps . -
with the problem. Manufacturars were producmtz hand calculators with- { ’
in the price range of mary families in a short two or three years after the
questiori came to mational attention. Students brought them'to class and . -
teachers wanted direction immediately. Articles, pro-and con, appeared '
often. State, Regional, and National meetings were filled with sessions, -.
workshops, debates, and research concerning the use of these tiny mar-
vels. The Board of Directors of the National Council of Teachers of
Mathematics adopted a pusition which read in part: °
Mathematics teachers should recognize the potential contribution of this ca!culator as
a \ﬂuable instructional aid. In the classroom the mini-calculator should be used in

jmaginative ways to reinforce }arning and to motivate the learner as he becomes pro-
ficientin maths’l_nancs (NCTM, Newsletter. December, 1974)

¢ The procfamatiox. Which appeared less than' five years after the issue ) ) .o N
* " became ] inent, gavc a great deal of support to the protagonists of .
’ thnsdcvxcc.
Today, most mathematics «.ducators have acccpted this position ) R o

(some, less cagerly than others), either because of*continuing research
supporting the use of hand-held caiculators, or because rejectton would
be tantamount to burymz ones head in the sand. Several studies (Rud-
nick and Krulik, 1976; S¢hnur and Lang, 1976) have demonstrated that
students who use mini-calculators do no worse, aid m some cases im- >
* prove significantly, in overall mathematical achtevement than youpgsters
who do not usé calculators. School dlstncts in New York, C}ahforma, A;
- . Indiana, and ather states across the Nation are putting calculators in a LI
nimber of experimental classes. Preliminary resuits seem to indicate that ’
. students: take an interest in using minicalculators and that pencil and o
paper computational skill test scores are as high for students who regul-
> . arly usg calculators as those without access to these electronic instru- a
"7 ments. : 0 .
Such widespread acceptance is by no means a fact of life among
. parents. Rudnick and Krulik (1976) indicate that the majonty of parents

o

-

Reprinted by permission from School Science and Mathematids . 4
80: 211-217 March 1980. . . : .
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whose children participated in their study-had sincere reservations con-
cerning the use of hand-held calculators in the classroom. They reported
that parents were overwhelmingly-certain that children would become
dependent on calculators with ccatinued use.

In the last five years, authors and speakers have continued 1o suggest
uses of the calculator in “imaginative and enjoyable’’ ways. Maay of
_.these uses secm to ‘focus on the motivational value of the calculator,
stressing games or computations necessitating their use. Somewhat less is -
said about their ‘functional use (as a tool). A conrensus among these
vocal leaders of the movement is that the word problems’in the texts be-
come ‘almost trivial when calculators are used in place of pencil and
paper algorithms and echo the'nieed for more meaningful problem sclv-
ing-experiences. Indeed, mdespread use of the hand-held calculator may
shrink the pencil and paper algonthm curriculum, but it will certainly ex-
pand the curnculum inthe dlrecuon of real world problem solving.

Consider the model for human problem solving based on an informa-
tional orocessmg theory-which views problem solving as sequencial proc-
ess. The solver defines the probler; decides on a plan of attack, carries
out. th“s plan and chooses the optimal solution. Ther~ is evidence
(Shapnro 1973; Shields, 1976), to suggest that childrend.  ..e problems
using a discernible pattern, and that solutions to comprehensive prob-
lems become more realistic and complete as age and problem solvirig ex-
perience increases. Hence; it seems reasonable to begin comprehensive
problem solving practice in. the early- grades and continue such efforts
_throughout the school experience. It is within the context of such practice
that hand-held calculator may have its most valued impact. Students
using calculamrs as their adult problem solving counterparts use them as
atool.

Consider the problem solvmg process in greater detail. During the first
step, thé solver recogmzes the question being asked and translates the
problem into terims that make sense to him. Step two, development of a
plan of attack, often involves the use of one or more generalized problem
solving Stratemes. These “rules of thumb”’ include working backwards,
using contradrctron. rdenufymg subgoals or looking at a related prob-
lem. <

After the solver has some plan, he proceeds with this plan to reach one
or more possible solutions. This third step-in-thesolving process invcives
the use of a number of heuristics which are taught in the elementary
schools. For example, the solver inay make a list or table, guess and test
various hypotheses, use a graptt or draw ﬁéures and set up equations. It
is this step of the solving process in which the mini- calculator will aid
students_in_reaching more accurate and realistic solutions. In addition,
during the fourth step in the_pr_o'cess, selecting the optimal solution, the

«
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calculator ¢an be used effectively to check the solution against given
- informatinn. ‘

For example, in one sixth grade class, a discussion concerning the
safety of an elevator in a nearby department store prompted the tea;her
to challenge the class to determine the number of persons who could

0 safely use the elevator, which had a posted weight limit of 1600 pounds. .
After some addmonal discussicn, it was determi-ed that the solution
depended on the ‘“average” user of the elevator. Two days later, groups
of students posted themselves outside the elevator to ask users how much
they wenghed' After several days and many weights, the average weight

. was determined with the aid of calculators. The sample of over one
) ~\hundred respondents ‘was handled easily using calculators. An added
L ' - bonusw ‘as-that the youristers were able to average after each group had
completed its questioning,-and found that after the first fifty weights, the

. average weight fluxuated very, 1 little with additional data. (This is an

\’ S'

excenent example of the Law of Large Numbers, that is, — tends to
n

stabilize as n becomes large, which.an alert teacher could exploit to teach

some basic probability). After it was determined that ten and a half
“‘average’’ people could use the elevator, the discussion began to focus
on the accuracy of this solution. Some students noted that some indi-
viduals questioned did not respond; other students wondered about peo-
ple who lied about their weight. The consensus was that some safety mar-
" gin should be allowed. Finally, the number of people, (men, women, and
. children), was limited to ten, and further discussion was postponed fora

few-days. o
When the elevator problem was again raised, a young man suggcsted
that they, do some investigation concerning weight variations for the
population using the elevator. Certainly ten businessmen could exceed
the 1600 pound welght limitation, whereas, this limit probably would
never be reached by ten,sixth graders. For this part of the problem the
R students used a table of heights and weights, rather than sampling indi-
> vxduals at the elevator. Using the range of weights indicated for the adult
male, female, and eleven year old boys and .girls, the students con-
structed,confidence intervals for ¢he safe number of elevator users. Their

- conclusions are shown in Flgurc l

-

5

by Boys, 11 years old - {17,25) s
: : Gicts, 11 yearsold, . 117,.24]
|- Ad: females . (10,13}
Amlr ‘.‘a!es ' . 09

FIGURE 1—~Confidence intervals for safe number of elevator users.
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The students could not use this additional information, except to agree
that a “‘surefire’ safe limit could be set at seven—the minimum allow-
able riders for the four populations studied.

This final solution to the problem gave rise to some additional ques-
tions: *‘Since we have a safety margin in our limit, did the elevator manu-
facturer also include a margin of safety iri-the 1600 pound limit?"* Maybe
the elevator won’t hold (accommodate) seven very large men.”" Dis-
cussion continued until the bell signaled the end of class. Interest in the
problem diminjshed and the challenge did not come up for general dis-
cussion again. Perhaps the students recognized that they had achieved
only a partial solution, but one they could live with.

This example provides several instances where the calculator insuied
accuracy and, more importantly, prevcmed the solving prceess from be-
coming “boggcd down” in laborious algorithms. Often. young children
will spend a great deal of time on pencil and paper algomhms, and forget
the purpose of their calculations.

. If our intent is to provide experience in problem solving so that stu-
dents gain ms:ght into the process, then we should minimize the number
of instances where children can become sidetracked. In aur example, the
numerical solution is not nearly as important as learning that any law
which guarantees the safety of everyone in a particular instance can be-
come overly restrictive. This class was beginning to recognize this prob-
lera while being ensconced in the solving process. This type of insigiit and
involvement is necessary to provxde for transfer to other similar problem
solving situations.

The kind and number of comprehensive problems which car be con-
structively -undertaken by children is limited only by your imagination.
Some popular challenges which children enjoy are design problems.
Design a playground, park, or bike trail. Children may elect to improve
the lunch room service or the crosswalk in front of the school. Any prob-
lem which your students attempt to solve should embody the following
princinles:

1. Itmust be of.interest to youngsters so that they are willing to undertake the time con-

suming problem solving task..

2. It must be a situation or question for which the students do rot already possess a

solution, or a direct method of oblalmng the solution (e.g. scli v a readily available
equation).

3. Itmust besolvable using previous learning.
4. ¥ possible, the solution should become reality.

The first three conditions insure that youngsters work at the highest
cognitive level creating something new in their experience. The fourth
condition is hecessary so that children will accept future challenges. One
fourth grade class tried to solve the, continuing logistics problem in the

.school cafeteria and worked on the various aspects of the problem for

-~




- about six weeks. The culmination of this work was a collection of pro-
posals which they expected would ‘‘improve the ervice in the cafeteria”
“This list was taken to the principal who took a great deal of time to evalu-
ate, suggest modifications, and present the proposals to the required
administrative personnel. As a result of their work, several changes were
implemented, and the students were anxious to attack other problems
they found around the school.
The Unified Science and Mathematics for Elementary Schools .
(USMES) project has developed and tested several interdisciplinary units
centered on long-ra ° mvesueauons of real and practical problems =
- taken from the local/. .mmunity environment. Some of the units involve
challengés in advertising, bicycle trinsporgation, designing for human
proportions, consumer research and soft drink design. These units, each
embodied in a teacher resource book, have been classroom tested by
teachers from all over the country during the past five years and have
proved popular with students and teachers alike. Any of these problems
te .. or the comprehensive problems defined by you and your students will
‘provide hundred of computational task over the many weeks-it takes to
: ' reach a satisfactory solution. ‘ _
) Consider the following comprehensive problem which children enjoy: . -
s Invent a new soft drink that would be popular and produced-at a low cost '
(USMES, 1973). Typically, an intermediate grade or middle school class ‘ o )
will spend two or three periods per week, for several weeks, reaching :
some solution to this ques:ion. During that time interval students will
conduct surveys on taste, carbonation,~and price. They will test drinks
y . for individual preferences, and devise a rating system for soft drinks.
They must analyze taste restlts for intermediate and final experimental
drinks. In one particular class, the students used this data to find means, ’
-~ variations,. percentages and cost analysis. In addition, two youngsters .
tricd to find an equation which predicted the cost-preference relation-
——a ship. Although their efforts were fruitless, their teacher reported that
they tried such a task because of their belief in the power of their calcu-
lator. Therein lies one of the most striking arguments for using hand-
3 held calculators in the context of comprehensive problem solving: the -
- solver learns the limitation of the computing device and begins to. under- '
‘ stand the need to organize and direct the solving process. Indeed, one of o
the most crucial ingredients in- effecg:ve problem solving is the organiza-
tion of, and inferences made from the given information.
How does the teacher plan her instructional sequence so that her class .
is in a position to take advantage of the symbiosis of problem solving and
the hand calculator? Before any interesting problem solving can occur, .
the student has to be conversant With the calculator and the *fun time”’ :
, ~ atmbsphere prevalent when calculators are first introduced must dimin-

-
[

™
H N e
.

N
o

41"

Af v
~




e

isi. The student needs a little instruction and some time to practice
puric\hing'the correct buttons. A successful way to provide adequate
preparation is through games and large number calculations. ' Concur-
rent v}i\th this practice, the te4Ther should supply some short puzzle pro-
blems from which their pupils can learn the organization of data and
zencrali\zpd problem solving strategies..” This simultaneous practice may
continue ‘as long as your students ¢njoy and profit from’the experience,
but it should not keep you from getting into comprehensive problem
solving within a few weeks after the calculators are introduced into your
classroom. o ’

Calculator insteuction . ’ Short puz;lc and
and practice ‘ prodlems and discussion

comprehensive problem solving
experience

FIGURE 2—Sequ.:rice for introducing problem solving using calculators.

Full Tt Provided by ERIC.

Once a real world challenge is introduced, altow your students to find
their own direction without letting them stray from their intended goal.
Most teachers find that class discussion prior to data gathering, compu-
tations, experimentations, etc., prevents the thrust of such work from
becoming divergent. Teachers should not discourage enthusiasm in a

.direction which is foreseen as an unproductive search. Failure in one

direction may-be as instructive as continued teacher engineered success.
Periodic work on the challenge should continue until interest begins to
wanein t!nc majority cf your youngsters.

Summary

Our focus, in this article has been to show that mini-calculators and
problem solving, two of the most topical issues in mathematics education
today, complement each other perfectly. The natural combination of
real world problem solving experience and the hand-held calculator pro-
vides an answer to the recurring teacher question, **Now that we know
how to push the buttons, what do we do?’’.

Comprehensive problem solving supplies many realistic computational
situations where youngsters can use their hand-held calculators. Further-

1. Maay examples of these kinds of acuvities can be found 1n the Arishmeric Teacher. November. 1976: Vol 23. No. 7.

2. For example. see the 8asic Thinkine Skdl Seres by Anna Hamadek, Midw et Publ, Co.. Troy. Mxchigan:

.mn.




/ more, in the context of this problem solving experience, children begin to
appreciate the strengths 2nd limitations of the mini-calculator.

On the other hand, the calculator aids pupils in reaching accurate solu-

tions to compntational questions quickly. This speed and accuracy helps

] “-them get through the forest of problem solving: without getting side-

v tracked while they:are working around a single tree. So wait no longer,

start using those miniature marvels in meaningful ways through investi-

_gations of long range comprehensive problems. -

AT e
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Calculators: Their-Use In The Classroom

Gregory Aidala

T 18 Guilder Place
Bellston Lake, Neﬁ{York 12019

The use of pocket calculators within a classroom setting has received a
great deal of attention in recent months. Briefly, the proponents of these
devices argue that calculators can: 1. reduce the time spent on tedious
and routine computation; 2. allow its users more time to focus on
problem solving techniques; and 3. provide increased motivation toward
the study of mathematics. L ' : .

- Opponents of the use of calculators in the classroom fear that these de-
vices may become a crutch and thus students will become weak in their

. ability to perform basic arithmetic computation. This philosophy pro- -
poses that students may become so dependent on their machines that

. once removed, a student may not be able to independently execute basic
number skills. . , :

The solution to this controversy rests with the_ investigation and pro-

_miotion of various experimental programs involving calculators. Any

* weaknesses or imperfections in existing programs must be ironed out so
that those with justified criticism can accept the use of calculators as a
worthwhile learning device in the classroom.

- PURPOSE

In November, 1974 a proposal was approved by the Bethlehem Central
* School District, thus inaugurating a program utilizing minicalculators in
mathematics class at the eighth grade level. '

In accordance with the National Council of Teachers of Mathematics
policy statement on the utilization of calculators in the classroom, our
program was intended to reinforce learning and to motivate the learner
in the study of mathematics. The function of the calculators were: 1) to
provide continued and increased motivation toward the subject matter;
2)'to furnish faster and more efficient ways of solving problems; 3) to al-
low problems of greater intricacy to be attempted; and 4) to contribuge to
further applications and explorationof relatedtopics..

It was ouf belief that the use of a calculatpr was both a faster and more
efficient means of achieving solutions to mathematical problems. How-
ever, the calculator was not meant to,be a substitute for skills which oth-
erwise could be performed manually. In order to operate such a device,
the student must possess a basic understanding of the mathematical con-
cepts of addition, subtraction, multiplication,. and division. Therefore,
the use of a calculator was not an end in itself, but a means to an end.
The emphasis in the classroom.was to improve the problem solving skill
rather than their ability to compute.

)

Reprinted by permission from School Science and Mathematics

78: 307-311; April 1978.
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- : JPREPARATION

: Our program'proposal called for the purchase of fifteen Bowmar-25§
= calculators and adaptors. At the time of purchase in November 1974, the
cost of each calculator and adaptor was approximately thirty-five dol-
‘ lars. However, present market prices of calculators have shown a sub-
stantial reduction dver the past.two years. One calculdtor and adaptor
’ 'similar to the onss we have emplQyed in our program can be procured for
under twenty dollars. . s
~ The physical requirements for calculators to be utilized in a classroom
i setting were minimal. A locking two drawer file cabinet was used to store
all equipment. The top drawer of the cabinet was divided into fifteen
numbered areas corresponding to the specific number on each adaptor.
Similarly, the bottom drawer was subdivided and labeled according to
. the same number imprinted on each calculator.
. In our program we opted for adaptors over the more conventional re-
c ' chargmg devices which other calculator programs seemed to prefer. We
; felt that since we had fifteen calculators which were in operation during
five different-class periods in a school day, adaptors would be more ad-
- vantageous. Recharging devices couid coieivabl_v lose their charge dur-
., ing the day through overuse or misuse. It was our belief that recharging

small group of students. In our case, adaptors provided a continuous and
longlasting performance to a large number of ‘tudents. -
, Our final barrier in preparing the classroom for implementing calcula-
. tor usage was solved with the assistance of our school electrician. The
classroom had only two electrical.outlets but our electrician designed
three twenty foot extension cords with outlets every four feet. Thus, each
. extension cord was planted between a set of two desks and each cord pro-
_ ._. vided-five-extra outlets in the room from which a source of current could
be drawn.

™

CLASSROOM OPERATION

In utilizing calculators in a classroom environment certain regulations
were necessary to insure the systematic Operauon of the program. In our
program, rules and regulations regarding the use of the calculators were

. specifically outlined and strictly._enforced. Students were fully aware of
- * . their responsibility in taking care of their assigned calculator. This in-
v cluded careful handling of the calculator and adaptor at all rimes. shar-
ing the calculator with a respective partner, and other applicable instruc-
tions. We found that students rarely took advantage of the sifuation
since misuse of a calculator resulted in a loss of privileges for those indi-
- viduals.
In cach mathematics class whcre calculators were employed. one re-
sponsible student was selected to assist the teacher in the distribution and

i JR—
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: devices would have been more valuable if the calculators were used by a,
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collection of machines. The dual function of the student monitor was to
carefully distribute the appropriate ¢ calculator to individual classmates as
their number was caned ‘by the teacher. Upon receiving each calculator at
the end of a class period, the student monitor returned each calculator to
its proper resting ptace and checked to see that all machines v-ere proper-
ly turned off. The teacher was responsnbleefor the distribution and collec-

tion of each adaptor. -
The student monitor was an energetic conmbutor to the efficient func-

tioning and overall success of the calculator program. By having an able

- assistant,-the teacher was in a better position to ccatrol the completion of
activities for that classroom period. ’

Utilization of calculators in mathematics class began witf instruction

on how 10 operate the calculator. Initially, ten minutes of free time was °

set aside for students to explore the capabilities of the calculator.

As the popularity of calculators has continued, many- .companies-have
produced various models. Ir. our program we had to overcome the fact
that a large percentage of students had accessto calculators at home.

More often than not, differences did exist between the calculators stu-

dents had used previously and the Bowmar-25 calculators. However, a

model calculator made of construction paper (1 feet by 3 feet) was em-

ployed to explain all canabilities and limitations of theBowmar-25.
Although many stuc ats claimed to be proficient in the usz of a cal-

culator, we fcung that at least two full class periods devoied strictly to’

problems in addition, subtraction, multiplication, ard division were
necessary to insure mastery of fundamentals. In particular, division
prablems proved to be most difficult for students to solve.'For example,

.3 1432, 4?32 or 432+ .3 all represent identical division problems bu:

on a calculator many students often confused the order of imput. As a
result, a great deal of practice in addition, subtraction, multiplication,
and especially division was provided before proceeding to specific
problem solving situations.

UsEes IN MATHEMATICS CLASS

As we approach the end of our fourth year of using calculators in
mathematics classes, there does exist one method of operation superior
to all others. “W'e have experimented with the use of calculators on a daily
basis for a short period of time, as well as the utilization of these devices
on a once a week basis. It seems that no matter how familiar students be-
come with the use of calculators, new material could not be presented in
a class period whete the calculators were in operation. The level of ma-
turity of eighth grade students combined with the distracting powers of
- the calculator presented too great a hindrance to allow normal learning
activities to takc place. However, we did conclude that in order to profit
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most from the use of calculators in a mathematics program, usage of the
devices should take place once a week.

Usually at the end of each week, following a fifteen minute quiz re-
viewing the material for that ‘week, the calculators were used to solve
many related problems. In this case, any explanation of a problem by the
methematics teacher could generally be bypassed since in the minds of
most students the material was very fresh. This technique prevented stu-
Cents from becoming too dependent on the calculators, but at the same
time provided increased motivational support for the required curn-
culum.

The eighth grade curriculum at the Bethlehem Central Middle School
is composed of many diversiiied topics ‘epresenting various branches of
mathematics. Units of study coverea durme the school year include
_probability, statistics, proportion, percent, coordipate geometry, solid
geometry, and algebrd. Within each unit there exists several exercises in-
volving the use of calculators which serve to f'einforce learning activities
from previous class periods. :

By way of example from the unit on sohd geometry, the volume of a
rectangular prism and the volume of a cylinder were studied during one
week of classes. In class on Friday students were tested via a short quiz
reviewing the material on volume covered during the previcus four days.
In the remaining twenty to tw~:ty-five minutes of class, students were
required to complete an exercise with the aid of calculators. The exercise
involved calculating the volume of two rectangular prisms and four
cylinders. Students were given the dimensions of each figure and
fcrmulas were written on the board for reference. The substance of that
exercise is summarized below.

FIGURE LENGTHOF  WIDTHOF _HEIGHT  °*VOLUME=
BASE BASE - __LxWxH

1) Rectangular

Prism 19.85 ft 1131 178 1727.15caft
2) Rectangular

Prism 42,3 cm 33.6cm 15.5¢cm 25.963.74cucm

. RADIUS HEIGHT VOLUME =2R‘h
3) Cylinder** 7.4in 16.7in 2871.50cuin
4) Cylinder 29.5cm 52.8cm 144,280.48 cu cm
$) Cylinder S54m 1.6m 1.46cum
6) Cylinder 211 125.8f1 ~  2,047,742.2cuft
*Siudents were inviructed 1o round of [ umm tothe nesssst hundudlh place. *

yudid

The preceding exercise satisfies the. objectives stated earlier in this
article concerning the function of calculators in a classroom'setting. The
use of calculators to assist in problems on volume illustrates that more
intricate and exact dimensions of geometric figures which ordinarily have
not been part of the curriculum can be included as required classwork.

One of the goals of our program was to mclude exercises involving the

v .
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use of calculators which reinforced recent classroom activities. In achiev-
ing this goal, the facilitation of student interest in mathematics has also
been increased. The implementation of a faster and more effi cnem -
method of problem solving' through the utilization of calculators sub-
stantiates still another advantage of our program, . .

S ) SUMMARY

The use of calculators 'in the classroom’ adds a distinctive feature to
any mathematics program. Based on four years of experience, it is the
feeling of the author that calculators have a definite function in a class-
room setting. At the elghth grade level calculators; if available, should be
an integral part of the mathemaucs program but only as a supplememal Lo
aid 1o learning.

The following list.of guldelmes is meant to assist those educators inthe . -
process of initiating a program involving the use of calculators. -

_1) The purchase of all calculators should :nclude aone year \\arrann 10 rcnlacc or re- ’
pair any malfunctioning mdchine. . .
2) Distinct and permanent identification is necessary for all calculalon and adaptors.
3) The authors highly reccommend the use of electrical adaptors as opposed 1o any type
of recharging device. Adaptors will provide uninterrupted and longer fasting service
A in the utiljzation of calculaxors.
4) A locking cabinet must be provided to enhance the easy distribution, collection. and .
proxecuqn of all calculators and adaptors.
$) Designated calculators should be assigned to students so that a particular machine is
utilized by the same pair of students on a continupus basis.
\ 6) Rules and regulations imvolving the use of calculators must be clearly stated and en-
d forced so that students will exercise care in the operation of each calculator.
7) A trustworthy student should assist the teacher in the distribution and collection of
calculators during a class period. .
8) At least two full class periods of instruction should be provided to all studenis vis-a-
vis. methods of eperating a calculator. . “
’9) Although educators should be urged to explore all avenues of incorporating calcula-
¢ “ tor usage into daily lessons, we highly recommend tha the utilization of calculators
not exceed one experience per week. The novely of calculators in a classroom en-
viropment can easily be eroded by overuse that more importantly basi¢ computa-
umal skills might exentually become weaker.

L3
.

Ennchmem problcms dealing with such topics as probabllm. statis-
o tics, proporuon. and geometric figures illustrate how easily calcuiators v
’ can become a valuable tool in the study of mathematiés. As an instru-
. ment of great motivational prowess, the incorporation of calculators into '
' . a mathematics program is rapidly and deservedly galmng prominence as
‘ an ¢ssential resource.  »

Be -

W™




.
. -
o
- /
¢
.
.
N
-
.
3
.
-
4
.
s

P
]

Section IV

°
USING CALCULATOPS:
Suggestions from Surveys, Research
‘ and Classroom Trials
i .
\




During the l976-77 school year, 560
" hand-held calculators were introduced
into the mathematics instruction of
= _thinty-eight intermediate-level class:
rooms in six Title I schools in the In-
~diarapolis Public School System.
... Approximately 1000 students were in-
i; volved and all teachers of fourth. fifth,
. and sixth-grades in the six schools par-
= nclpatcd in the project. The project -
- was continued during the 1977-78
- .school year, but during the secc J year

- untary.
_ Thepurpose of this project was to

problcm-solvmg pcrformancc and in-
. creasing student interest in mathe-

_ ‘matics by incorporating calculators in
- the mathematics curriculum.

°

Classroom Matermls and
. Methods

To enhance the use of calculators, a
variety of written materials was
provided to project teachers. A pub-

_ lication titled *“How to Use.Your Mini-
_.Calculator” was prepared and distrib-
'+ uted for orientation and familiarization
. of teachers and their students. Also, a

-~ guide correlating calculator use with

- the adoptcd mathematics textbooks
was given t6 each teacher. The guide

" proceeded page by page through the
textbooks and gave directions and ad-

_ vice on the many ways of using the
calculators as an integral part of in-

_ struction. The primary uses of the cal-
-~ culators included reinforcement of

-

. teacher participation was cnurcly vol- -

i investigate the possibility of improving -

* Glm Vannatia is supervisor of mathematics,
mde: kindergarten thréugh twelve, in the In-
‘dionapolis (Indiana) Public Schools. Lucreda

> Munon is an assistant professor of mathematical
“sciences at Indiana Universuy-Purdue Umverm)
8t Indianapolis. The authars were cod:reaom of |
- theproject reported in this article.

3

:ff.;gepxipced by permisaion. from Arithmetic Teacher 27:

A CASE FOR THE CALCULATOR

By Glen D. Vannatta -and f.ucreda A. Hutton

-

computational skills, textbook problem
solving. supplementary practice with
large numbers, and extended out-of-
text problem sdlving.

In addition to the guide, a correlated
series. entitled “Problem of the Week.”
was developed for calculator solui.on.
These problems concerned appli-
cations that were relevant and of cur-
rent interest to intermediate-grade pu-
pils. For example, during the very cold
winter period, one problem concerned
carning money by shoveling snow.

The probicms were graded in difficulty
so that fourth, fifth, and sixth graders
“could work on the same general topic
but at different levels of complexity.
Each “Problem of the Wee} ’ was put
on transparencies so that teachers -

could easily present the problem toan -
« entire class for dxscussnon and calcu-

lator solution.

Teachers had considerable latitude
in the manner of their.use of the calcu-
lators. Pupils worked in pairs for most
calculator periods. One pupil would
work a problem while the other ob-
served and miade a written record of
the work. Then an exchange was made.
In some activities the pupils played a
competitive game. For example, pupil
A would enter a multiplication fact
such as 7 X 9. Pupil B would have to
say aloud the product and then push
the = key to reveal the correct answer.
A point was scored for pupil B if he or
she was correct. or a point for pupil A,
if not. Pugpils alternated in giving prob-
lems until a goal score was reached. In
this way skill in basic facts was devel-
oped or reinforced.

Teacher coopcranon in the first year
of the prq;ect was hnghly variable. Al-

* though thqrc was no open refusal to
participate. it was ‘evident that a few
teachers did not support the premise of
‘using calculators in mathematics class-
rooms to improve problem-solving

53

. creative in fulfilling their obligations.
‘One teacher developed a series of les-

PR .

abilities. Others were very positive and

ons on nutrition that involved prob-
lems about calories, vitamins, size of
servings. and soon. The integratidn of
subject matter was excellent, and the -
calculators were used to arrive at con-
clusions that were interesting and
mcamngful.

Equnpment

The calculators chosen for the project
were basic four-function machines
with memory, percent, square root,
and sign-change keys. The keys were
large and color.coded. Wooden boxes
capable of holding one classroom set of
calculators in compartments were
made by the industrial arts depart-’
ment. Eaéh calculator was coded to'in~
dicate school, teacher, and studcnt ,
Varying routines of checkmg out and
checking in the calculators from’the.
boxes were developed by the teachers.
The identification numbers and pupil
monitors proved very effective. The
matter of security was less serious than®
anticipated. Perhaps we wete luckyy
but only two calculators were missing
at the end of the second year, and these
were lost in a school break-in, not as a
result of careless classroom manage-
ment. The calculator boxes were usu-
ally stored in a lockable cabinet orin a
closet when not in use. Only one calcu-
lator was damaged due to the extent of
malfunction by pupil abuse. About
four percent of the calculators devel-
oped malfunctions due to defective
manufacture and were replaced under
warranty. - .
_Another concern centered on the
power source for the calculators. The  °
calculators used were powered by four
AA disposable batteries. Battery con-
sumption was less than anticipated. An/

i
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‘estimate of battery cost is between $1

- . and $2 per year per calculator for mod-

"erate or normal usage. As a backup.

-+ ACadapters were included in the pur-

- - chase price of the calculators but were

- . pot distributea or used. The specter of

- atangle of extension cords, the hazard
of electrical outlets in antique class-
gooms, and security.problems limited
the usefulness of adapters in our judg- -

. ment. ‘ ’

PR

Project Results ‘

After two years-of operation of the In-
- dianapolis Public Schools calculator
.5 project, we reached several con- |

Yy

.. clusions, including the following:

. 1. Management, security, and power
"+ ' source are minor concerns that can
. beeasily handled. B
2. Most pupils are interested in and

motivated by calculators.

3. Most pupils can learn to use calcu-
" . lators quickly, carefully, and accu-
) rately. '
;4. During the 1976~77 school year the
’ sixth-grade students registered a sig-
nificant increase in problem-solving
. performance. ~
* 5. During the 1977-78 school year cal-
culator classes showed achievement
" well above normal expectations in
both computation and problem ap-
7. . plications on the California
-» Achievement Test.
* 6. Use of calculators in intermediate-
level classrooms does not seem to
.~ resultin a decline in computation
performance. Although during the
1976-77 school year the fourth-
grade students registered a signifi-
cantly smaller gain in computation
: performance than did the control
group, the 1977-78 results show ng_
. indication'of a decrease. At the end
of the two year period, improved .
performance was noted for most
classes.” .

. The California Achievement Test
“was administered to the calculator
,-'classcs in September 1977 and az2in in

-~ May 1978. For this period a grade

; equivalent score difference of 0.8 could
.* beexpected in combined computation
aad concepts/applications. The out- *
¢ observed was that 86 percent of
E MC . ' ot
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the calculator classes scored mean
grade equivalent gains greater than 0.8.
Actually, in 1977-78, computation
gains exceeded those for concepts/ap-
plications. No control group data were
available during the second year of the
program. The results were similar for
each of the three grades, fourth, fifth,
and sixth. |

There are many factors that affected

student performance. It is not our in-
tention to claim that the impressive
gains were solely the result of calcu-
lator use. Other factors were present, as
in any typical school setting. During
the first year the research design in-
cluded a control sample. The Metro-
politan Achievement Test was admin-
istered for evaluation of computation
and problem solving performance. The
second year did not involve a research
design with a control sample and the
California Achievement Test was ad-
ministered for evaluation of computa-
tion and concepts/applications. It is a
fact, however, that the calculators were
available and were incorporated into
the mathematics instruction cf these
classrooms and the students did show
very good gains on the California
Achievement Test subtests on compu-
tation and applications.

The teacher factor remains the most
important aspect of effective instruc-
tion—with or without calculators. The
teachers need and want curriculum
support from the administration. In

/our opinion, a successful calculator
;/ program must include effective teach-
ing materials correlated with the ongo-
- ing matbematics program as well as
-calculators. . 4

" If this study has value for clemen-

tary teachers, it is the positive in-

dication that they can experiment with
calculators inthe classroom without
fear of endangering computational  °
skills, and thata thoughtful program of
instruction integrating calculators with
text material can be presented. The |

> only danger, it seems to us. is to place
calculators into a classroom and leave
the outcome to chance.

Editor's note: As this issue goes to press. the
authors feport that the calculator project in the
Indiznapolis Public Schools continues slive and
well. Three other Title I schools have been
added in an expansion of the project. Although

o4
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a0 formal evaluation has been undertaken. feed-
back from teachers and standardized testing
gives evidence that the goals and approach are
effective. Another calculator project for high-
achieving pupils in grades four through six has
adopted some of the same features and matenals
of this first project. The great importance of1n-
service traimng of teachers in instrucional uses
of calculators has also been demonstrated. O
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- [®  Calculators
" “Nhat's Happening
- in Schools Today*

By Robert E. Reys, Barbara J: Bestgen,
James F. Rybolt, and J. Wendell Wyatt ,
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What’s happening with calculators ,
in schoo!’s today? Are they being used?
If so, by what students? How do teach-
ers feel 2bout using calculators in the
mathematics program? Should calcu-
lators be used on standardized tests?

Shaotld use of calculators be integrated

into basal mathematics textbooks? Ac-
curate answers to such questions are’
-essential in assessiny. ae current status
* of calcy:ator use in schools today and

Barbara Besigen is elementary mathemgtics ;. +
cialist for Parkway Schocl District in Si. Louts.
Missouri. Rabert Reys is prafessor of mathematicz
education at the University af Missour—Calum-
bia. James Rybalt is a mathemquucs teacher at Es-
condido High Schaal, Escandida, California.
Wendell Wyalt 1s an assistant professar of educa~
tiom, Unicersity High School. Sautheast Missauri
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more importantly, preparing for calcu-
lator usage in the mathematics curricu-
“lum during the 1980s.
During the 1970s many voices have
"beén heard debating the virtues and
dangers of calculator usage. A few
have cried out in fear that use of calcu-
lators will result in pupils who cannot
remember basic facts or do traditional
papcr-and-pencil computation. Teach-
ers, in particular, are concerned about
how calculators will affect students’
<computational skills (Palmer). The
“rot-the-mind theory™ has not been
supported by research (Suydam). Al-
though long-term effects of sustained
calculator usage are not vet known.
there is ample.evidence that frequent
.use of calculators in elementary
:schools has no detrimental effect on

Reprinted by permiss:icn’ from Arithmet.c Teacher 27: 38-43;
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achievement in mathematics. Some  *
have proclaimed that the rapid growth
and sales of inexpensive culculators
and their consequent widespread avail-
ability to pupils demand that the

. mathematics curriculum be reexam-
" ined and that teachers use calculators

as an instructional tool. Still others,
through the NACOME Report {(Con-
ference Board of The Mathematical
Sciences 1975) and official policy state-
ment by the National Council of
‘Teachers of Mathematics, have en-
couraged schools to formulate calcu-
lator policies and to make these tools
available to pupils to be used in crea-
tive and innovative ways of learning
mathematics. .

Dicac for information about calcu--
lator usage have been made at the

February 1980,




°  grassroots level by parents ard teach-
ers as w-1ll as by research groups—for
example, the ‘ecent Report of the €on-
Jerence on Needed Research and Devel-

_ opment on Hand-Held Calcilators in
School Mathematics. One of the recom-
mendations from this conference was
to survey current instructional policies
to answer questio~- such as, How ex-
tensively are calculators being used in
classrooms? It is toward that #nd that
this issearch was conducted.

The Study

In the spring of 1979, a survey of class-
foom (caclé‘e‘rs in Missouri was con-
- ducted to check the current attitude to-
.~ -wurd and the extent of hand calculator
usage. Rather than mailing question-
& .

N

¢

-~

naires, which typically has less than an

acceptable rate of return, it was de-
cided to involve fewer teachers and to
interview each of them individually in
order to obtain more complete and ac-
curate information. Ten school districts
were randomly selected from the /1978~
79 Missouri School Directory. In order
to insure the representation of a variety
of school districts, two urban, three
suburban, threc small co.nmunity, and
two rural school districts were selecied.
The following criteria were used to
characterize these four different types
of school districts.

Urban. located in a metropolitan
area with a population ex-
ceeding 125 000.

Suburban: located in a municipality

36, .

‘ 854

adjacent to an urban area or
within ten miles of an urban
area. .

Small Community:_not suburban
and servicing a population
between-10 000 and 125 000.

Rural: not suburban and located in
a town with a population
less than 10000. .

Once a school district was selected. a
second stage of random sampling was
done to choose one elemenrtary, one
junior high, and one senior ..3h school
withia the district. The supcrintendent
of each district was contacted and
asked for permission to contact princi-,
pals within the selected schools. Eve
superintendent expressed keen interest
in the survey and agreed to cooperate.
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“The third and final sampling stage in-
volved the identification of classroom
teachers. Evety full-time mathematics
teacher in the junior or senior high

. school was scheduled for an interview.
Two clementary teachérs at each grade
level from grades 1 through 6 were
randomly chosen to be interviewed.

This procedure was used to schedule
interviews with 202 teachers in the ten
districts. Eight tedchers were absent
when the interviews were conducted in
their schools. It was net feasible to re-
schedule these interviews so the results
of this survey are based on information
gathered from 194 teachers. Thirteen
percent of these teachers indicated they

~ were members of the National Council
~fF~achers of Mathematics. Eac ch in-

4= | [2‘

terview follbwed a similar set of ques-
tions and required from 10 to 25 min-
utes to complete. The questions used in
the interviews addressed key issues re-
lated to calculator usage. The protocols
were developed with the help of local
classroom teachers, mathematics coor-
dinators from several school districts.
and several mathematics educators.’
Prior to the interviews, the teachers
were asked to survey their classes to
determine how many of the children
had calculators available at home.
Sixty-eight percent of the students re-
ported having access to at least one cal-
culator. This percentage yaried little
when looking at the data by grade
level. These percentages are sligh dy
below those found in’the 1977-7% Na-

“

.
PR

tional Assessment of Educational Prog-
ress, which reported that oyer 75 per-
cent of the nihe-year-olds, 80 percent
of the thirteen-year-olds, and 85 per-
cent of the seventeen-year-olds had ac-
cess to at least one calculator. )
The opportunity to sit down with
teachers individually, outside the class-
room, allowed for gathering not only

“factual information, ‘but also teacher

insights, questions. and concerns re-
garding calculator usage in the schools.
Highlighted here are several of the -
questions used in the interview, along
with a description of the teachers’ an-
swers and comments.’ C .

Does your school (school district)

T
figve G ‘.u.w.'...s.'p""""’

An overwhelmmg majority of the 194
teachers interviewed said no current
calculator policy existed in their dis-
trict. Seventeen teachers reported their
school had a calculator policy, but the
exact nature of this policy was never
determined. The confusion among -
teachers regarding this question appar-
ently stemmed ffom what they thought
constituted a policy, whether it be writ-
ten or perhaps what their pnncxpal or
another teacher might have said to
them informally. Some xctual teacher
comments illustrate this uncertainty:”

“l don’t know if we have a policy
but 1 have heard we are not sup-
posed to use them.”

“] think our policy,prohibits calcu-
lator use.”

“They can be used in the senior high
but our board policy prohibits us
from using them in the junior high.”
“Qur principal doesn’t want calcu-
lators used in mathematics classss,”

After tilking with the teachers, in-
terviewers frequently contacted princi-
pals, curriculum coordinators, or dis-

“ trict superintendents in an effort to

track down specific policy.-In no case
were they able to locate a written pol-
icy formulated by a Board of Educa-
tion, superintendent, principal, or
mathematics department.

The interviews revealed that some:
schools are beginning to prepare a pol-
icy or identify some guidelines for cal-
culator usage. If such a policy reflects
teacher input, it will be very. flexible.
Of the teachers interviewed, nons felt a

E MC ’ . 57
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_ school policy should unequivocally
- ban calculator usage and there were
" none who felt it should be required.

The overwhelming feeling ‘vas that cal-

culators exist, that there are many ap-

. propriate places for using them at all’
levels of the mathematics curriculum,’
and that the type and extent ¢ this us-

____age should be left up 1o :ae discretion of

the individual classroom teacher.

This provides a background for the
questions that follow and the specific
siatistics that are reported in table 1.
Although percents are reported in table
1, color coding is also used to provide a
visual interpretation of the results. Dif-
ferent shades, from light (0-20%) to,,
dark (81-100%), suggest some trends

_ and patterns. Statistics are reported for

the whole group and for each grade

Jevel. In some cases. totals for a given

question do not add to 100 percent.

Thjs is due to rounding and in part to

some ieachers not answering certain

questions. A careful examination of
table 1 will provide insight into inter-
preting the results of this survey.

Should calculators be available to

children in school? If so, to which chil-
dren? At what grade level?

 Eighty-four percent of the teachers said
calculators should be available to chil-
dren in school. Many were careful to
add that supervision by the teacher
should be an important element. Table
I shows a breakdown as these teachers
characterized which children and at
what grade level calculators should be
used. There are certain trends in-

_ dicated by these data. One interesting
trend is that. in general. teachers are
likely to say calculators shouldbe |
used, but they shculd be uszd in higher
grades. For example. often fourth-
grade teachers would say calculators
should be available, “probably in the
upper grades and high school. but not
in my grade.” This feeling that “it’s
okay for everybody except my grade™
may be evidence of the teachers’ lack
of cenfidence in using calculators as an
instructiona! tool. Teachers were more
favorable toward using calculators
with all children rather than with only
the best or poorest studcn&s. At the
highes gradc levels, however, it was
common for tcachers to comment
at?ut calculators being a time saving,

' 3
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more efficierit computational device
than paper-and-pencil calculations for
the best students:

~ Teachers who had used calculators
were asked if.it had changed their em-
phasis on mathematics content. Many
commented that not only could they
work more problems if a calculator
was available, but also theyactually -

-covered more topics. Thev also re-

ported dealing more witn concept de-
velopment and less with computation
during their mathematics class. Fur-
thermore, more than 80 percent of
them reported observing attitudinal
changes in their students. Without ex-.
ception these changes were positive’
and were characterized by teacher
comments describing students as being
eager to attack problems. showing
greater confidence in ability to solve
mathematics problems. and becoming
more excited about doing mathematics.
Several teachers reported an inter-

* esting psychological problem resulting

from calculator use, namely, con-
vincing children that calculators aré le-
gitimate tools to use in a mathematics .
class. Some children felt it was cheat-
ing to use a calculator and expressed
guilt feelings when they used them.
These teachers said they worked hard
to dispell this notion and to nurture the
idea that use of calculators in mathe-
matics class was perfectly acceptable.

Can children bring their calculators to
your class and use them? -

Forty-two percent of the teachers re-
ported that children could bring calcu-
lators to their class and use them.
Many teachers. however, said this
question had never come up. Their pu-
pils occasicnally brought their calcu-
lators to school to show their friends or

. for play during free time, but they had

never asked to use them during a
mathematirs lesson. Primary, senior
high. and experienced teachers are
most likely to allow calculators to be
brought and used in their classroom.
Whereas, table 1 reports far less inter-
mediate and junior high teachers al-
lowed children to bring and use calcu-
lators. Why? One explanation is the
heavy emphasis on computational al-
gorithms that are introduced and prac-
ticed and practiced and practiced ..
during this time. Use of calculators
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could greatly alter such a mathematm
curriculum!
Have you used calculators in vour
math class? What for? Would you like
to?
The most frequent use of calculators
was reported at the senior high level.
with little being done at the elementagl)__‘m,_"

" level. Teachers who had used calcu-

lators reported using them most often
with problem solving, word problems.
anZ basic facts. These teachers in-
dicated they had found the calculator
useful for developing certain mathe-
matical concepts as well as for compu-
tation.

Of those teachers who had not used
mlmnlnmrc fortv-two percent said they
would like to. By far. the most desire
was expressed at the senior high level.
Elementary teachers generally ex-
pressed caution. saying they would use
calculators if they were convinced cal-
culators were an appropriate instruc-
tional tool and if they could receive
proper training. Several also indicated
a concern for declining test scores if
children used calculators.

Is special training needed to use cal-
culators effecively?

Elementary and junior high teachers
were clear in expressing the need for
training. In talking with some teachers.
it became appareni that thev under-
stood training to mean learning to op-
erate their particular calculator. They
had not thought of training in terms of
learning ways to use the calculator ef-
fectively and incorporating it in their
daily lessons as another instructional
tool. Only 9 percent of the entire
group—mostly senior high teachers—
had attended a calculator workshop or
training session, although 67 percent
said they would like to attend such a
session. Palmer (1978). in a survey of
leadership pefsonnel responsible tor
mathematics instruction found this
same attitude: “Teachers felt that there
was a definite need for workshops to
help them develop and improve their
competence in the use of calculators in
mathematics instruction.”

Teachers cited several reasons for
their lack of use of calculators in the
classroom. Primarily, inservice training
was not available. They also men-
tioned that they saw little reason to get
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training in this area when no calcu-

Table 1; Percentage of Teachers of Mathematics Who Responded “Yes" to Selected
lators were available for use in their

Questions from a 1979 Calculator Usage Survey. (N = 194)

Provided by ERIC.

Legend D”’ 0% ot~ 80% classrooms. Although about 35 percent
of the teachers reported calculators
- 0- 20% i& 41- 60% gi-t00%  Were available for classroom use, fur-
~ ‘ ther examination showed this typically
- : Inter-  Junior  Senior meant a few calculators were available
~- Whole Primary  mediate high high . . .
e OO T e iy e (B2 1L (NES) (2 AR (N2 O (N2 30) -M‘w..a_mg&hgm,aﬁt;ggl_@,gzI,l,t.l,g_l,_nlg_!_hg:_w
7 Should calculators be available 5 matics classroom, or perhaps a sct of
| tochildren in school? calculators was available on a check-
- - out system. Rarely were there suf- !
Which children: ficient quantities to provide a calcu-
- al lator for every student or even for
every pair of students in a classroom. ..
best* Often it was found that teachers within
a school where calculators were avail-
. ‘ able were unaware of their exxstencc
poorest” - ' 5 8 Y 8 In no instance were there sufficient
What grade level: ‘ quantities of calculators avallable to
% . R - : provide for two or more teachers who
primary ! @j; 21 26 . 28 wanted to use them at the sapae time.
_ '*"”;:*‘i " When asked what s, :cific informii-
intermediate® (i &G 1 % 43-§  tion or material should be included in
- — T a calculator training session, the teach-
" junior high* i &, o] | Y'Y - ersidentified the following as high pri- .
B , - orities: sharing of specxﬁc instructional
. . . N & i B activities and lessons that use calcu-
senior high”. } o 04 0 o0 lators: discussions with teachers who
Can children bring their calculator o v . had used calculators and who would
to your class and use them? 42 ¢ 47 27 29 & share their perceptions and experi-
Have you used calculators in your . @ = cnces; learning of effective ways to
mathematics class? 35 14 23 42 OO communicate with parents regarding
- S the role and value of calculators in a
Would you fike 107* 44 a5 mathematics program; and reporting of-~-
; - recent research related to calculator us-
s special training needed to use o T age.
- | calculators effectively? e g o4 78
y - s - Should children master the four oper-
Have you attended a calculator , ‘ '
workshop? > 9 > 6 13 17 _ations of arithmetic before they use cal-
_ culators? o
Would you like to attend a : i R G iaied Rt BRh: ) o
(another) calculator workshop? S = 3 —;35 g 5 ‘l;:'xghty perf;:nt of the ttleachers fellt chil-
- . T ren should master this material prior ~
Sh0ulq children master the four LS to using calculators. Several indic;;(cd
operations of arithmetic:before : - that if thi t done, the calculat
they use calculators? ° . o = AR £ ob at if this was not done, the calculator
ol R would be a crutch and chlldren would
Does use of calculators cause y have little incentive to learn to com-
children to .ose ability to compute ] pute. Other teachers, however, said
or to remember basic facts? 43 37 49 44 41 ¥ some of these skills could be developed
Would you support calculator use K with the calculator. One teacher re-
on standardized tests measuring e marked that if students could not com-
concepts or applications? 43 35 18 52 (o pute, they probably would not be able
Does your mathematics textbook to use a calculator effectively either.
have activities written for Teachers generally agreed that with
T calculator usage? 11 6 10 10 20 slow students or students at the senior
— - - high level who had never léarned to -
%mgg:ﬁfagzvye activities L 54 35 52 55 Z:?‘ 3 compute, a calculator should be used
' - hm‘ﬂ R A because these students would probably =
. never learn to compute otherwise. This
“Pleports percent of teacheri who responded yos 10 this queston and the preceeding 009, comment is in the same spirit as a rec-
" ) |
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a\ommendanon found in the Overview
. and Analysis of the School Mathematics
. Curriculum, K-12 report. although
- none of the teachers interviewed men-
- tioned this NACOME Report. None of
. the junior high teachers reported that
" ealculators should be made available
i udents,-which-is-in di-
rect conflict with the NACOME rec-
ommendation “that beginning no later
than the end of the eighth grade. a cal-
culator should be available for each
mathematics student during each
mathematics class. Each student ,
should be-permitted to.use the calcu-
Iator during all of his or her mathemat-
" jcal work including tests.”

Does use of a calculator cause chil-
dren to lose the ability to compute or to .
remember basic facts? ’

* Few teachers said they could answer
this from first hand experience. but 43
~ percent felt that using a calculator

. would cause students’ ability to com-
_pute to decline. Twenty-two percent
said they were not sure but would like

-to know. The ambivalency of the re-
sponses to this question reveals the
need for dissemination of recent re-
search on calculator usage. One of the
.common findings among such studies
is that children with calculators avail-
able during mathematics classes do as

" well on traditional paper-and-pencil -
computation tests as classes who have
never used calculators. (Wheatley, et al

1979)

If a calculator is made available to
each student, would you suppoit calcu-
. lator use on standardized tests measur-
ing concepts or applications?

_ When this question was posed. teach-
ers were reminded that most standard-
ized tests have a computation subtest
along with portions measuring appli-

1 cations, concepts, or problem solving:
and furthermore, their answers should
be directed toward the parts of the test
not dealing exclusively with computa-
tion. Over 40 percent of all teachers ,

said yes to this question and supported

their position with statements such as
the following:

“This would provide a better mea-
sure of what they know.”
E ltclculators are not going to give

S A i ext Provided by ERIC
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- dicated that problems taking advan-
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them any answers, they will do only " grades 1 through 12, have at least one
what they are told to do.” " I calculator available at home. .
“Calculators are a part of the rpal 2. Eighty-five percent of all teachers
world and should be used.’ fﬁe said calculators should be available to
“Calculators are a tool—like a pen- students in school. \
cil—and should be available.” 3. Almost two-thirds of the teachcrs
“Calculators allow more time to con-  52id that special training was needed to
¢entrate on the p[ocess." N usz calculators effectively. N
| 4. Over half'of the teachers would
like to have calculator activities in-
tegrated within their regular mathe-
matics textbook.

o e nee

et o,

On the other hand. teachers who felt
calculators should not be uséd on these
tests commemed as follows:

“How will we know what they
know?”

“Standardized tests snould reflect
what students know without a calcu- -
lator.”

“Using calcuiators is not fair. stu-
dents must do their own thinking.”
“I want students to havc the skills I
leurned.”

“Jv’s like digital watches, kids won "t
know how to tell time any more.”

There are many other interesting
findings but these four document that
teachers perceive the need for calcu-
lators within the school mathematics
program as well as iheir own need for
inservice training with them. Further-
more. a sizeable portion would like cal-
culator activities included within their
regular mathematics program. Taken
collectively, these morsels as well as
the overall results from this calculator
usage survey suggesi-that things are v
changing; but much more Jeadership.
direction, and training is sorely needed
if calculators are to be used to, their
fullest potential.

Does your mathematics textbook
have activities written for calculator
usage? o

A review of current textbooks reveals
few activities explicitly written for cal-
culator_usage. The interviews confirin
this; only 11 percent of the teachers
said their textbooks had such activities
and most of those were senior high
teachers. Over half of the'teachers said ~
the textbooks should include instruc-  ~
tional activities providing for calcu-
lator usage. Several teachers felt that it
should be their responsibility 0 adapt
textbook activities for calculator use,
but the overwhelming majority in-
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tage of the calculator’s capability as
well as instructional suggestions should
be included in their mathematics text-
books. Some teachers also stated that
such activities should be an integral
part of the conient being learned and
not simply tangential problems, chal-
lenges, or artificial uses for the calcu-
lator.

Summary -

This statewide survey of calculator us-
age in Missouri schools provides much
food for thought. Here are four of the
juciest morse!ls to chew on:

i. Sixty-efght percent of students,
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CALCULATORS IN THE ELEMENTARY SCHOOL:
- . ’ ' e~ A SURVEY OF HOW AND WHY il
‘ & . by
= Leonard E. Etlinger and Earl J. Ogletree
The availability and decreasing cost’ of hand-held calculators has put
N preéssure on aducators to carefully comsider the issues related to classroom

utilization of these devices. During a series of National Science
Foundativon-funded activities* in Chicago and St. Louis from 1978-1980,
information was collected*from more than 400 participants with regards to
how and why calculators should be used in the classroom. The objectives of
the sessions were information spread and exchange, and facilitation of
decision-making: the participants included teachers, administrators, and
parents. ) ”

Opinions on the issues appeared to have a common considerationf i.e.,
implementation of hand-held calculator programs should be based on sound
policy, well-defined procedures, and the caution due any innovative
activities in education. *The participants agreeH that teachers need to be
aware of how, when, with whom, and under what conditions calculators can be
used in the classroom. They felt that calculators should be usd to
reinforce basic facts, discover new concepts, explore number patterﬁs, play
instructional games, solve applicable problems, and aid in-a wide variety
. of math, science, and other subject-matter learning.: The only significant
caveat developed by the participants was that

Calculators, like any educational

innovations~~whether ideas, mater-

ials, or devices--can be misused

in the classroom. With calculators
: ' such’ misuse could be highly detri-
mental to the students' arithmetical
development.
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| ; ) Findings . '

The participants first responded to a variety of questions in discussion,
debate, or panel response formats and later formed working groups for the
development of recémmendations. Responses to selected questions and issues

are presented next. .

*This material was prepared with the support of the National Science .
Foundation Grant Number SER 77-20715. Any opinions, findings, conclusionms,

“ or recommendations expressed herein are those of the authors and do not
necessarily reflect the views of the National Science Foundation. In the
operation nf this and other projects, Chicago State Universit, has not and
will nct discriminate against any person on the grounds of sex, age, creed,
color, or national origin.
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Most

CALCULATORS IN THE ELEMENTARY SCHOOL:
A SURVEY OF HOW AND WHY

Can Children Learn Mathematics From Using Calculators In School?

Responses were almost entirely positive. Some typical responses were?

Children can explore the ideas behind arithmetic,
concepts of mathematics, numerical patterns, very
large and very small numbers, etc.

Calculators can help with basic facts, multiplica-
tion and division, order of magnitude, intuitive £
concepts, and motivation in math.

Cﬁildren will learn more because it will be more.
interesting and fum,. ’

Kids can work with very large numbers and experi-
ment with a variety of prccesses such as the square
and root of numbers.

Calculators can reinforce place value and number
sequence. Approximation techniques can be
developed.

Students Be Permitted To Use A Calculator All Of The Time In School?

¢

-

Probably Not! Children need to learn facts and
basic¢ skills without calculators.

Math activities should be planned specifically
for calculator or noncalculator usage. Attention
should be given to the objectives of the activities.

»

Children in junior and senior high school should
probably be allowed to use calculators in most of
their school work and tests.

Very young children (kindergarten and first grade)
should,only use calculators in a few carefully
designed instances.

Can Calculators Facilitate Creative Thinking In Students?

responses were affirmative. It was felt that calculators could

enhance creativity

There are many fine examples of activities where children
use their own creativity together with the calculator in
numerical exploration.

Pencil and paper calculation, particularly when not
mastered properly, restricts creativity.
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Students are not limited to "nice"” or “"easy" numbers.
Decimals, nonintegral quotients, large numbers, and
negative numbers can more easily be used in problems
which are to be solved by calculators. .

Some students will attempt difficult problems which
they would not think of trying y};hout calculators.

The gifted or advanced student will be challenged to
explore sophisticated prcblems and concepts.

L]

Should Children Use Calculators Before They Have Mastefed The Basic
Facts? ; :
Children must, eventually, be able to perform basic
arithmetic without calculators.

Calculatcrs are motivational; this motivation may result
in kids learning basic skills.

Children should still learn basic skills without calcula-
tors, for the most part, and use calculators for other
types of math learning. This other math learning could,
in some instances, take place before basic skills are
mastered. ‘

Possibly, older kids who have still not mastered basic
skills can benefit by moving on in math and science
with the aid of the calculator.

v

Should Calculators Be-Used On Tests?
Clearly not 6n tests of basic arithmetic skills.

"They probably should be allowed on most higher level
tests. )

. Tests should reflect real life needs. When appropriate,
test rules should be changed to allow the use of
calculators. National and regional -tests, including
standardized schievement tests, college admissions
tests, and vocational aptitude tests, should be
reviewed in light of this changing technological
aspect of society.

The project participants also generally agreed on the following points:
-~ Calculator activities must be carefully
designed if genuine learning is to take

place.

-. Teacherhfraining will be critical to
proper school utilization of calculators.

ERIC | .




- Many math actiVities, particularly in the
‘ primary grades, must still be done without
calculators.

- The greatest threat posed by calculators
is -that of misuse in the classroom. Poor
teachers might use calculators as an excuse
~ to avoid real teaching and learning.

- Continued exploration, research; curriculum
development, and policy formation is needed.’
. N -\

Recommendations

In a variety of working gfoups the project ﬁarticgpants developed the
following recommendations and statements concerning school utilization of

calculatorse.

a

1. | Primary Grades (K-3).

A; Recommend usage of calculators to:

1. Develop an understanding of the number system

(a) provide additional practice with number sequencing and
” number recognition ‘ .

- Fd
(b) develop place-value concepts
(c) provide additional drill with basic facts ;

(d) become more familiar witﬁ basic operations performed on
- numbers and number patterns !

(e) to aid in introducing the concept of fractions R ' v'l .

(f) to help the student become proficient in estimation

(g) reinforce the base ten s&stem‘(i.e., metric, money)
2. To concentrate on*problem-solving skills

3. To promote success in arithmetic for slow learners

©
3

4. To challenge the gifted student ' .

2. Middle Grades (4-6)

A. Reinforce and follow-up of ideas in grades (K-3)

B. DeVelopLobjectives for hand-held calculators in the curriculum
each grade level




-

Bl

C. Each grade level Fnd/or department should - ‘

, .
« 1. Integrate calculators into the curriculum by means of various
topics, such as

|
|

) « (a) Science - interéreting data
~ measurement
- metrics

(b) Math - money, estimation, averages, place value, story

problems
~ ‘ (c) Economics ~ consumer education
TERY [ J
\uy v
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2. Utilize calculator activities that correlate with the scope and
sequence of their math texts - '

3. Grades (7-12) , .
: Uses = In review féf preparation for high school placement tests
- To reinforce- fractions, decimals, and related Pa;terns
~ Review concepts rather than tedious calculations
- Formula ﬁb;k - quick calculation (e.g., areas and volumes)

- To promote creativity in students to develop their own games
and problems S0

- Creating math lab activities to reinforce concepts

-

- Solvenstatistical4pfbblems and their application

~ Use to aid in the solution of real life problems

-~

- To cheék answers and formulae of algebraic problems

&~ Introduction of programmable calculators to calcalate
commissions, mortgages,, taxes, and interest.

A

The followfpg recommendations were made regarding teacher training.

- -

1 ~

; : . Staff Development

Staff dev éﬁment program should be sufficient to meet the bbjectives

establisheq” for each of the grade and/or department levels: Primary,

intermediatle, Junior High, Senior High.
)

1

'
i
i
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Suggestions include: P
1. In-service workshops e
2. In-service credit oz payment for courses S ’
3. - Funds for resource people, professionals, video-taped lessoms
4. Released time to observe programs functioning i}
. Facilities (beyond those available through an individual school district)
for providing in-service training should be: . - T
(a) University and college extension programs
(b) University and college short .courses ) X
) (c) Facilities such as a leafning center or teachers center. .’ ~ .
The teacher centers should provide facilities for staff
! " development in the use’ of hand-held calculators. ; ’
5. Schools should train their own teachers, to use calculators
proficiently and have one "very proficient,” or troubleshooter
teacher, to help out with teacher problems; could be another .
. professional, or a resource, to help with teaching problems.
. 6. Faculty must be supportive so there is ﬁo one undermining the
program. School personnel (and parents) must be convinced.
7. Some guidelines should be established on use of calculators. -
In addition to these "suggestions additional research should be done to
discover the "best” uze of calculators in teaching and learning.
The participants in the workshop and survey .were asked to list materials "
needed to implement and develop a calculator program in their chool.
. . . - . . .
" Materials .
f- Supply enough -calculators for largest class in school a

(It is probably important that this set consists of .
one standard model) ° ,

-~ Booklet with suggested outline format including con- . s
ceptual and skill activities appropriate to grade.
level i

~ Individualized packet for student enrichment ‘ I

- Teacher packets that can be used in classroom situ-
ations '

-
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- Tdentification of the use of the calculator in subject
matters other than math and‘science;vsett;ng up pac—
‘ .kets to be used . i Cormmmm

- Identification of th; model of calculator used

K . .
- Identification of the updated resource materials
available ‘

-~ Learning Center activity books

Fal

»




struction.

.

Using Electfonic Calculators With
Third And Fourth Graders:
A Feasibility Study*

George F. Lowerre, Alice M, Scandura |
Joseph M. Scandura, and Jacqueline Veneski
' MERGE Research Institute

. 1249 Greentree Lane - >
. Narberth, Pennsylvania 19072

During the sumnier of 1974, a sequence of mini-experiments was con-
ducted by the authors, exploring &vays to use electronie calculators with
children ages 5-7. The results showed that the children responded en-
thusiastically to the calculator, and that the studems who used them
showed considerable gairs in mathematics achievement.

As a sequel to this sequence of mini-experiments, a small experiment
was run using the hand held calcuiator with children ages 7-9. The exper-
iment was designed to help answer these questions for grades 3 anc 4: (1)
‘which standard mathematics-topics-can be taught most effectively usmg
‘the hand held calculator? (2) What implications does the hand heid cal-
culator have for problem solving situations? (3) What new mathematical
topics can be successfully introduced because of the availability of the
clectronic calculator? For comparative purposes, a standardized mathe-
matics achievement test was administered both before and after the in-

Ity S

* "Five third and fourth grade children | parucxpated in the study dunng a
ten week period in the fall of 1974. Three of the children attended regu-
larly and were gnen the Metropohtan Achievement Test, both before
and after the mstrucuon The other two attended irregularly, and were
not’tested. Instruction took place during 32 class meetings during the 10
week period, with each méeting lasting 30 to 60 minutes.

Among the topics which were mtroduced were the following:

- Operation of the calculator.** ?

Using large numbers on the calculator. The children discovered that
some iarge numbers, suci as 180 billion, cannot be shown on the calcula-
(or.

Writing numbers using only the 1, 0, + and = keys

Negative numbers (introduced using temperature and a number line
with spaces to the left of 0); addition of signed numbers. = ° 4

Internal logic of the hand held calculator; discussed visual appearance
and unseen meinory of the calculator as a problem is entered.

Estimating: getting “‘ball park’’ answers for addition and sub‘raction

, problems, then using the calculator tc check the estimate.

 * This research was supported by Texas Instruments. 1. workmg under contract with the MERGE lnstitute.

** Texas Instruments Model T{ 2500 w as used throughout the study.

Reprinted by permission from School Science and Mathematics

78: 461-464; October 1978. -
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Mumber tricks (take a number with 3 different digits, reverse the

digits, subtract the smaller from the larger, the sum of the difference and

“the difference witn the digits reversed is 1089)

Area

Decimals (introduction to ten:hs and hundreths using a square divided
into 100 parts; addition, subtraction, and multiplication of decimals)

Decimal-fraction equivalencies )

Inequalities with decimals

Unit pricing
Flow charts for adding and multlplvmg using the hand held calculatos.

Prime and composite numbers; prime factorization of numbers up to
50. ;

Throughout the ten week period, a great deal of time was spent review-
ing and practicing the arithmetic operanons with whole numbers and
decimals.

For the three children who attended regularly, the resuits on the
Metropolitanp Achievement Te=¢ (reported by grade level) were as
follows:

Instruction  Instruction
Computation 43 6.2 +lyr. 9mo.
A Concepts 7.3 1.7 + 4 mo.
(age9) Problem Solving 7.0 7.0 ’
. Total 5.6 6.9 +lyr. 3mo.
Computation 38 5.5 +lyr. 7Tmo.
B Concents 38 5.6 +1lyr. @Smo.
-(ageT) Problem Solving 3.7 4.9 + Lyr. 2mo.
Total 36 5.6 + Zyr.
.. - Cumputation - 24 29 + S mo.
C Concepts 38 4.9 + lyrn i mo.
(age9) Problem Solving 34 4.4 + lyr.
Total v 3.7 + 7 mo.

Before _

After -

3y
While these large gains in mathematical ability are quite impressive,
several limitations must be mentiQned. Small group, esseatially indi-
vidualized instruction, is not typical of the classroom teaching-learning
environment. In a one-to-one situatian, a skilled and careful teacher can
immediately correct any mlsconcepnon, and adjust work level to student
needs. For example, one child was given a quick review of subtraction of
whole numbers when he experienced difficulty in subtracting decimals.
Also, the Metropolitan Achievernent Test relies heavily on accuracy in
addition and multiplication tables, and much time was given to practive

on tables, albeit with the calculator,
However, these facts are not enough to entirely discount the very real

a

O
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gains that were shown. Several of the children were in the upper range of
the scale origirally, and the retest did not necessarily represent a real
> power test for them. Gains in areas such as understanding of negative
numbers, comprehension of flow charts, real world problem solving
skills, and actual ability to compute with the hand held calculdtor were
not measured at all. Nor will they be measured in other stancfardnzed tests
generally in use.

< SUMMARY

As a result of this study, we would like to offer these tentative answers
to the three questions asked about third and fourth grade mathematics.

Question 1: Which standard mathematical topics can be taught most
effectively using the hand neld calculator"

&) The hand held calculator is espeually useful for testing and practic-
ing place value skills with whole numbers and decimals. Quick, non-
tiring practice (as contrasted with wriiten practice) can be given.

b) Negative-pumbers are discovered through just “pla)mo with the
hand held calculator. Formulas sichas A<B=2 A-B = TCecanbe .

. - —-—-tried withmanyritmibers so the child can se-e the pattern. :

¢) Decimaland metric measures,. mcludmg area and volume, can eas-
ily be taught.

d) Prime and composite numbers can be more easily identified be-
cause of the capability of quickly and accurately checking factors.

¢) The calculator is especnally good for going from fractions to decn-

’ mals, but difficult the other way.
f) In general, a guided discovery method can be used because the
- children can quickly try many exampl*s and detect-pa:terns and -algs-
rithms.

Question 2: What lmphcauons does the calculator hold for problem
solving situations?

a) The students are able to obtain much more practice with “real
world®’ verbal problems (which are closer to real life than typical verbal
problems are). The children do not have to write the equation, whichcan
be tiring, nor do they have to remember the numbers and operations
mentally.

b) One surprising benefit of using the hand held caloulator in a verbal
problem solving situation was a test of how quickly different children
process oral information. A teacher can readily detect children with weak
listening skills and weak short-term memories by taking note of children
who continually need the problems repeated. In fact, practice with this
type of problém and increasingly longer and more difficult examples

» . seemed to help the children gain speed in listenihg skills. -
¢) The children enjoyed and were highly motivated to try fairly com-




plex real world problems involving several operations. Teachers used the
calculator to explore large number, problems that occurred in other sub-
b ject areas such as social studies and language arts. Students made up
their own problems and tried solutions, often discovering a nezd for

. operations or algorithms which hadn’t yet been taught.

d) Because the computation is done easily, the empbhasis in teaching
can be placed on problem definition, delineation of relevant and irrele-
vant information, operations involved, formula and equation writing,
pattern recognition, and alg~rithm formulation.

Question 3: What new mathematics topics can be successfully intro-
duced because of the availability of the electronic calculator?

a) In general, from the brief experience in this study (grades 3-4) and
discussion with teachers, tke standard mathematics curriculum can be ex:

. panded in computation to include use of numbers of greater magnitude.
.« A shist of emphasis occurs, so that estimating skills, the use of negative
numbers, and decimals occur ata much earlier time than normally taught
ip the standard mathemazics curriculum. In other areas, such as pre-com-

.

niques become an intrinsic part’of the curriculum.
b) The teacher has an opportunity to spend more time on concrete
_ representations of concents since she can check instantly for student
understanding by having the children show answers on the calculator.
Patterns can be more easily detected and explored. The children are not
tied to a writing surface when they explore math~matics.
c) The teachers expressed a desire for nroblems using large numbers.
As one teacher said, “‘a book of ‘fantastic’ large number word problems

o

gures as parades, fairs, or numbers of hamburgers or pizzas eaten at a
_ restaurant.” )

: Finally, we should comment on one concern expressed to us by
teachers: How will students who have used the caiculator do on stand-
ardized tests? Our strong, but tentative results should help in 1his regard.
In this study we incorporated many activities using the calculator to
«drill’”’ the children in addition combinations and times tables. These
activities could easily be incorporated into any calculator curriculum.

72 | 70

____puter skills, the use of flow charts and discovery. of ‘*debugging’’ tech-

———js-needed. Things kids can relate to, such as large number attendance fi-




The Calculator in
the Classroom

By Norma Zakariya, Margo McClung, and Alice-Ann Winner

The hand-held calculator was intro-
duced into the mathematics curricultm
of the United Nations International
School at the upper-clementary level
during the 1977-78 schooi year. The
new progra:n was inspired by a sum-
mer.workshop at-Teachers’ College.
Columbia University. Calculator in-

. - struction began on an experimental

o

Reprinted by permission from Arithmetic Teacher 27: 12-16; March 1980.
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level in a fifth-grade class in November

»

Norma Zakariva has been leaching third grade at
the United Nations International Schocl in New
York since 1975, Her previous expenence includes
teaching third grade in Scotland. fifth grade in
Venezuela. and grades three hr~~h seven m Ma-
laysia. Margo McClung has been seaching fourth
grade at UNIS since 1975, Her previous experi-
erice.includes teaching grades swo through six in
the International School in Manilla. Philippines.
and third grade in Columbia. Alice-Ann Winner
Aas been teaching fifth grade a1 UN1S since 1976.
She previously tanght pifth grade at the American
International School in Vienna, Austria.
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1977. This was followed by instruction
in a fourth-grade class, and laterina -
third-grade class.

The goal at the fifth-grade level was
enrichmeni of the existing curriculum
and instruction was organized to dem-

_._onstratethe.use-of the calculator as a

learning tool for exploration of con-
cepts too difficulttoexecute without it.
The main direction of the instruction
at the fourth-grade level was extension
and expansion of the existing curricu-
\Jum, especially in problem solving.
Lessons were developed. also. (o dem-
onstrate the use of the calculator in
real-life situations.

The experiment was not begun in
the third grade until February 1978.
This was not by design, but happened
1o be the point in the school year when
the experiment had already shown en-
couraging results in the two-higher
grades. 1t did prove, however, to be the
optimum time to begin: the children

73
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had reached a maturation level in their
skill development that enabled them to
profit from calculator instruction. The
instructional emphasis was varied: re-
inforcement of basic concepts, devel-
opment of number sense, problem
solving, and a greater appreciation of a
mathematical system.

. The parents were informed of the
program and the rationale behind it ei-
ther at the open-house at the beginning

\ of the school year. or by letter prior to

the start of instruction. The solid sup-
port of the administration and the en-
thusiasm of the children greatly con-
tributed to the success of the

. experiment.

Three examples of lessons taught in
the various classes are described here.
These particular lessons are repro-
duced in this article to illustrate the
diversity of the program and not be-

v cause they are necessarily the best ex-
amples ot: the maay lessons prepared.

',.’ 7 S ) 74" \74

" Subtraction with regrouping

Third Grade

Third grade children often have diffi-
culty in understanding the concept of
place value. Subtraction with regroup-
ing is, therefore, a process which they
frequently find hard to master. The
lesson in figure 1 was designed to help
them overcome their problems io these
two important areas.

The steps were as follows:

1. The child decides if regrouping is -
necessary. -

2. If so, the child regroups without
the calculator.

3. The child then enters the cle-
ments of the regrouped number on the
calculator to check that the regrouped
numuer does equal the original num-
ber.

4. The child proceeds to subtract.

°.
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We found that those children who
had been unable to cope with the con-
- cept prior to instruction with the calcu-

lator were able to do so upon com-
plcuon of these exercises. Even
children who had been successful be-
fore the calculator was used found this
lesson fascinating and developed a
clearer understanding of the operation.
We felt that the lesson not only facili-
tated the teaching of the subtraction-
with-regrouping concept, but also in-
creased the children’s basic number
sense.

Fourth Grade

Estimation

Fourth-giade children frequently have
difficulty understanding the concept of
estimation and the value of this proc-
ess. The lesson ir figure 2 was designed
to demonstrate that estimation is a us-
able, everyday process. It was planned
to—

(1) broaden the understanding of esti-
mation; .
(2) give an added dimension to the use

(3): show how estimatior may be ap-
plied to gveryday life.

The children were asked to bring a

. grocery advertisement from a newspa-
per or a flyer from a grocery store.

The children found thai the calcu-

lator freed their minds to concentrate
on developing a method of spending
the money within certain limits. In
problem D, the children faced a new
situation and found the calculator in-
valuable in finding the cost per ounce
and finding the better buy. The exer-
cise increased the pupils’ understand-
ing of grocery shopping and the use of
the calculator in an everyday situation.
They thought about the problem to be
solved and not just the arithmetic.

Fifth Grade

Number theory: Quadratics

In this introduction to quadratic equa-
tions, the goals were to—

. (1) extend mathematics knowledge by
exploring new mathematical ideas;

[Kc
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Fig. 1

Regrouping

Copy the examples and write the missing numeral.

Use your calculator to check your work.

For example: h
088 = 8

t o
18 0

Find the sum of 800, 180 (18 tens), ond 8 ones. The sum 98
988 will appear, which is the number you regrouped.

1. h t o 2. h t )
7 8 5 6 4 3
? 18 5 ? 14 -3
5 h t ) 6. h t o
2 5 1 ¢ 0 7
2 4 ? ? 10 7

Subtraction (Regrouping When Necessary)

Do the following subtraction exomples

-k 2600 2. 160
~130 ~70

5. 106 6. 144
=12 -63

9. 474 10 146
~187 -107

g ———

h t o 4. h t o
4 0 2 3 9 7
? 10 2 2 ? 7
h t o 8 b 1t o
5 3 2 3 | 6
5 2 ? d ? 6

. 3. 87 4, 89

-36 —43

7. 129 - 8. 143

—82 -57

11. 243 12. 243

-137 ~162

Now use your calculotor to check your answers. If you made an error, do you know what

you did incorrectly? Did you—

{1} Regroup incorrectly?
. {2) Subtract incorrectly?

Try not to make the some error again.

(2) explore alternate metheds of prob-
lem solving;

(3) introduce, at a basic level, an alge-
braic concept as a transitional ex-
perience preparatory to formal in-
struction in the middle school.

The students were told that the exer-
cises would help them extend their
knowledge of mathematics by explor-
ing new ideas. They were given the ex-
amples in figure 3 with the information
that the numbers that were needed to
make each sentence true formed a type
of pattern.*They were challenged to
find the pattern, and asked if there was
more than ore pattern.

5 75

Conclusions

Questions have been raised in the re-
cent literature coOncerning the best use
of the calculator in the elementary
classroom. Should it be used as a tool
of the existing curriculum or should
the curriculum be ¢hanged to imple-
ment the calculator? Both uses were at-
tempted at U.N.LS. The third-grade
lesson on regrouping demonstrates
how the calculator can be used effec-
tively to promote better understanding
of a textbook lesson involving a con-
cept that many children find difficult.
The fourth-grade lesson on estimation
goes one step beyond this approach.. A




Fig. 2 i textbook topic was selected. but the

- lesson was made more challenging.
. A, List the costs of six items on your grocery list in the column morked "real.” Round this  The calculator relieved the children of
figure to the nearest ten {or hundred) and list thé rounded figure in ‘the column  the burdensome calculations that more
marked “estimote.”” Then find the real totol of your grocery list and the estimoted,  difficult new material involves. The
totol. ; fifth-grade lesson illustrates how: the

Rec! . Estimate calculator makes it possible to go
1. beyond the curriculum. studying a
2. topic not normally included in a fifth-
3, - ____~ pgradetextbock.
4 @ — ————  New dimension .
5. - . ———————  Concepts once thought too difficult for
6. ——————  aparticular age group were explored
" Total ___ andunderstood with the heip of this

new tool. The children seemed to de-
velope a much better number sense.
B. If you gave the grocer $30, would you receive chonge? Problems that the vast majority of the
€. You are in the grocary with $10. From your grocery list, estimote the cost of eight children were unable to solve without
" flems thot you could buy with your $10 ond hove the least omount of money left the calculator became manageable for

What wos the difference between the real ond estimoted totols?

. over. . all. It was possible to concentrate on
fem . . Estimate analyzing how to soive the problem
1. i : once the calculator relieved the chil- -
B dren of the cumbersome computation ”
3 . involved in arriving at the solution. In
short, the calculator was not simply
4 — ————  used within the limitations of the text-
S — — ——  book. Its use compelled the teacher to
6 —— : ____ rethink traditional ideas and added a
7. _____ wholenew dimension to the teaching
. 8. Totol of mathematics. *
.D. You wish to buy on item that is sold in two sizes: Increased understanding
Size 1 2409 @ $1.09 Many children elected to work in pairs
Size 2 4809 @ $1.79 rather than individually. Invariably
Without using your colculotor, which one is the better buy per grom? this promoted discussion and increased
With the calculator, how much does a grom cost in each size? their understanding of thie ideas and
. . processes in their specific assignments,
- Size 1 Size 2 AN .
. which, in turn, meant an increased
Which size would be the better buy? _____ How much would your sov- level of interest and success. The work
ings per gram be?
Fig. 3 . }

. For each number sentence there is o .
number that will moke the sentence true.
Find ‘o number for each sentence. Do you
see a pattern in the numbers? 7. (—— X ——)— (108 X —_}+800=0

X )= (5X_——)+6=0

6 X ___)—(37X )+ 70=0

8. (— X —)—(7X—)+10=0
2 (— X _—)=(8X_)+15=0 ) -

9 (— X__)—(28X__)}+75=0

3 X )—{15X —)+50=0 -
10 (X —)— (16X )+ 55=0

4 X )—(13X_—)+22=0

From A Teacher's Notebook® Mathematics Copyright : -
® 1975 National Association of independent Schools.

8 (—X ——) — {102 X —)+ 200 = 0 Used by permission,

. 76




with calculators also established that
those children with a good visual mem-
ory found it easier to memorize com-
putation facts with the continued use
of the calculator.

Exploration and discovery

Some of the calculator lessons were de-
signed so that the children were com-
‘pelled to explore and discover. In a
lesson on number theory, for example,
they were first asked to try certain ex-
“amples with the calculator. They then
had to solve similar examples. applying
what they had discovered. without us-

ing the calculator. .

Expansion

Problems which the vast majority of
the class had been unable to solve
without the calculator now became
manageable for all. It was possible to
concentrate on analyzing how to solve
the problem once the calculator re-
lieved the children of the cumbersome
computation involved in arriving at the
solution.

Motivation
Without exception the children found

tae calculator added excitement to
math lessons. The fact that the weekly

\
>3
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calculator lesson was a class activity,
rather than the customary group or in-
dividual instruction. provided an inter-
esting change. Chil-dren with little prior
success in math were elated to find that

“ they could also attain success. The

more advanced pupils found the mate-
rial challenging. They were encour-
aged to assist any classmate having diffi-
culty. The children discovered that the
calculator did not lend itself to every
type of problem. but was invaluable in

" the more complex mathematical opera-

tions at every grade level. The general
consensus was that the calculator is
“fun ” D
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- Calcullator
- to Tnimxe

By Phillis I. Meyer

é% 3.:i.r:;}t:: :

Reprinted by bermission from Arithmetic feacher 27: 18-21; January:1980.
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We had just finished a semester of
using simple handheld calculators 1n
our fourth-grade mathematics class. |
had given every student a sheet of pa-
per and asked each to write what, for
them, was the hardest thing about us-
ing the calculator. I got a variety of an-
swers—pushing t’ = wrong key and for-
getting to “clear” it, turning the
calculator off before a problem was
finished, making a mistake and having
to start all over again.’and most reveal-
~ ing of all, “When you use a calculator
. you have tothink.”

Several years ago we'hiad secured
several old office calculators, the noisy
“clunkety-clunk ™ variety of the forties
and fifties. The kids had had a great
time adding and subtracting. But mul-

Aiplying and dividing were more diffi-
cult since you had to wait for all those
|24

%
<

Phyllis Meyer 1eaches mathemalics in the [ou;lh
and fifth grades ai the Wyati Elementary School
in Denver, Colorado. She was involved in estab-
lishing the first public schoul mathemalics fabora-
tery in an elementary schoolin Denver. She has
also had expertence in teaching computer pro- )
Q lngin the elementary school.

¢

“clunkety-clunks.” The paper-tape
adding machine was better, but still
multiplication and division were nearly

_ impossible for my fourth graders.

For several years the sixth-grade

mathematics students of our school

"have operated a School Store that car-
ries school supplies such as pencils. pa-
per, and so on, at a very low price.
Profits were accumulating and we de-
cided to purchase twenty-five simple
four-function, rechargeable, hand-held
calculators. We had earned half of the
funds through the School Store and the
generous PTA donated the other half.
Having read many articles about the
advantages and disadvantages of hand-
held calculators in the classroom—in
particular, the November 1976 issue of
the Arithmetic Teacher, "a special edi-
tion on minicalculators—I was ready
to give it a try. My students were cer-
taicly cager to have “instant answers”
for their arithmetic problems.

I began by using a series of activities
designed to helpstudents learn the
function of each key. The + key was
casy, so was the X key: but the
tricky — key sometimes gave you a
in front of your answer. We explcred
to iind why this happened and discov-
erad that zero was not the beginning of
the number line—there were negative
numbers. We worked with negative
numbers for a few days, trying. in par-
ticuiar, to understand when and why
they niight occur in everyday life—the
thermometer, the family checkbook,
and your allowance when you borrow

- on next week's allowance. We experi-
mented with using the function keys
with negative numbers.

66__'0

Some students discovered that push
ing a function key more than once
would cause the calculator to keep re-
peating the process with the number
last entered. We used this with the X
key to talk abou. scientific notation
and powers of numbers. The =+ key
gave us some very long. strange look-
ing answers, usually with a decimal
point somewhere in the string of num-
bers. Place value had to be rediscov- ~
ered. The ones column was notalways
the column on the far right. Once the
basic understanding of place value was .
developed, students could easily con-
vert fractions to their decimal equiva-
lents and add, subtract, multiply, and
divide them.

Now that we knew what the function
keys would do, we could get started.

We played some simple games. with
the children playing with partners. We
took the School Store price sheet and
“spent” all kinds of money. We bought
things from catalogs and played
store,” using the calculators. We dis-
covered that some numbers looked like
letters when we turned the display up-




side down. We worked problems that

gave us answers that would sgell words

if we got them correct. Studerjts wrote
- thg‘ own problems to give “word" an-
. swers. Some of the problems became

quitelinvolved. with several types of

[ operations required to get the answer.
All of these activities acquairjted the
students with the capabilitie% of their
calculators. as well as with some of the
hazards involved in using th_ém.

So far,\all was a bed of roses. You
punched ¢ertain keys and got certain
answers. The game sheets all had “+7,
U 4K, X?r “+" telling youf what to
do next. The buying activitiés were a
fittle harder, but adding and|sub-
~ ““fracting-sums of money was }something
the children were all familiar with, be-
sides being lots of fun.

Probably the most valuab&e part of
our project in using calculatbrs was:in
.solving some “real” problenis. Now we
had to think. We talked about how we
would go about solving each problem.
We used role playing on some of the
harder ones. Did we want the answer
to be a “big” numbcg ora “small”
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aumber? We began with some simple
problems, solving them together as a

,class. After we had discussed the prob- .

lem, the students worked it individ-
ually on their calculators. Then'we
asked ourselves, *Does our answer
make sense? Is it about the right size?”
If not, then we tried again. We learned
to round.numb-rs and to estimate. And
we discovered that we still neededto -
know some basic arithmetic facts to do
this. .
We used our developing problem-
solving skills in consumer mathematics
situations with a variety of materials.
some even on the junior high level.
Sometimes the solutions got very in-
volved. Our simple calculators had no
memory and sometimes we had to use
our paper and pencil to ““save” num- °
bers we needed to use later.

1 made up problems with outrageous
numbess to be computed. Students be-
gan to create their own story problems.
using a variety of operations required
for solution. Surprisingly. some of the
most successful problem solving was
done by the average students. The stu-

- dents who could *reason’ through a
problem and know what should be
done were successful because tiey
were not burdened or hampered by a
1ack of computational ability. The <al-
culator could do that for them. The
frustrated students were the ones who
had always been told “what to do.”
Even though they could recite all the
multlpllcatlon facts in two minutes,
their reasoning abilities had not been
developed. Soon, though. with much
encouragement, these students began
to experiment: Will I get a reasonable
answer if [ do this? No? Then I'll try
this. They began to reason and to
think, but not always before they
acted. If they did have.to “try agam.
was not a defeaung laborious proccss
because the calculator would do the

. calculations for them. They began to
learn how to “reason through™ a prob-
fem. ’ .

A change in attitude was evident
very early in the project. Students who
had previously been of the "I hate

math" variety were now saying. “Do

we have to stop now?” We still had

some basic drill and practice. but the
o drudgery was gone when you couid

«,,{[ KC ‘heck the answer with a calculator .md

know right away if you were right or
wrong. .

As I look back ovér my lesson plans
for fourth-grade mathematics, I won-
der what some stranger would say
upon seeing the results and outcomes
of the fourth-grade mathematics les-
sons. Students had had expérences
m_—

[

e adding. subtracting, multiplying. and
dividing with negative numbers;

® using powers ~numbers in correct
scientific notation; ,

® place value. including 8-place deci-
mals; .

® converting any fraction to ns declmal
equivalent;

® adding, subtracung multiplying. and

dividing with decimals;

* reasoning logically to solve com-
plicated story problems using two or
more operations with whole num-#
bers, fractions, or a combination of
both. '

Without the calculator. these processes
would not have been possible for an
average nine- or ten-vear-old student.
The calculator is here to stay. at
prices so fow that nearly every child
has access to some form of simple cal-
culator. Through guided activities in

f ) -
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/the classroom, it can be a very valuable

“"teaching tool in exploring a variety of
mathematical topics. We used the cal-
culator in numerous ways and learned
many things. The most valuable bene-
fit to most students waslearning how
to reason logically through a problem
to reach,a solution. We found that
when you use a calculater, you have to
think,
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. Calculators for Kids Who Can’t Calculate*”

) Betty K. Lichtenberg

University of South Florida
Tampa, Florida 33620

It is not uncommon these days to find classroom sets of calculators
available for use in mathematics instruction. ** However, when mathe-
matics teachers at the high school level are asked what they do with them,
a common response is that they're used with the Trig class or other ad:
vanced mathematics classes. These'students find calculation tedious and
a waste of time, and they certainly should be using calculators. (So do 1
and so I do!) For the lower level mathematics students, though, some
teachers believe that calculators have no legitimate or appropriate use. 1f
lessons for these students consist of worksheets devoted to computation
practice, then this is true. Calculators turn such ‘‘lessons’ into trivial
and illegitimate exercises. On the other hand, there are many instances
where calculators for these kids (who can't compute efficiently and accu-
rately, anyway) turn the lessons into stimulating menial challenges. The

-followmg collection of possible uses of the calculator provndes some ex-
amples to try!

Calculator Competition -

= One type of activity that can be used with almost any mathematics
topic you're teaching at<this level involves competitions with the calcu-
lator. Students without calculators are encouraged to compute arith-
metical expressions mentally more quickly than students who are us-
ing the calculator. The choice of suitable expressions is crucial to the
success of this activity. For example, you wouldn’t use 497 X 368- - -.
The calculator would win hands down, but you can .use 400 x 700.
Students who have had a brief review of multiplication of multiples of
‘ten and who know that4 X 7 = 28 can determine that 400 X 700 is the
‘same as 28 X 100 x 1u0 or Zéojooo icker than another student who
7

. is depressing @ @3 E’], , , ,and Ei]on the cal-

culator.
The psychological advantages of this type of activity include 1mmedl-

ate positive reinforcement. There is a high probability of success for the
students and their confidence will be increased. The competition is non-
threatening because they’re playing against a machine and you’ll rig it so
they’ll win! ’

*

—_—
® Paper P d at the Annual C ion of School Science and Mathematics Association, Pittsburgh, Penasybva-

sis, November, 1977,

% Thu paper is a presentation of some ideas and activitres that c3a be used with dents in g i math ics class-
. esatthe high school kvel. Minor modification will make them appropniate for muddie school or junior high school stue

deats,

Reprinted by permission from School Science and Mathematics

R VDS ——

81: 97-102; February 1981..
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Management of this type of acuvzty wnll depend upon <he number of
calculators you have available. Wlth“ten, or two, or even one calculator
you can pit the Calculator-Kid(s) against ttie Thinkers. Cards, regular
notebook paper or:transparencies with expressions written on them
should be prepared before class.

Expressions such as these can be used to review place value idcas:

{70007 400 + 20+ 6] [4x 100+ 3 x 1] [43500 = 100] [10*]

You may want the students o conclude on thve last card that 10¢ is all
right the way it is (as long as we’re sure it’s not 60 and is the same as 10 X
10 % 10 x 10 x 10 ¥ 10 or 1,000,000).

Gther expressions that involve computations with whole nuriioers are:
Using basic facts of multiplication and the associative and commu-
tative properties of multiplication, students can quickly determine
that

40 X 60 = 4 X 10) x (6 x 10) = (4 X 6) x (10 x lO)orzdx
100 or 2400.
Recalling that for any whole number n, 0 X n = O makes this a
quick mental computation.
.10 + 97642 Remembering that for any non-zero whole numbern. 0 — n = Oen-
ables students 10 compute this with ease.
l 997 +- l85l Using the idea that 185 can be renamed as 3 + 182 helps translate
this into an easier computation:
997 + 185= 997 + (3 + 132)

II»’E

5 . = (957 + 3) + 182
« 1000 + 182
. = 1182.
" Using the principle that for any whole numbers a, b, and ¢ .
a- —(a+c)-(b+c)
ynelds (1234 + 1) — (999 + 1) or 1235 — 1000, and an easier com-
putation to casry out.

5 x 2468 Reraiming 2468 as 2 x 1234 gives

§%x 2468 = 3 x (2 x 1234)
= (5x2)x 1234
= 10 x 1234,

a very casy computation.
Calculations Too Big for the Calculator .

Using the most inexpensive calculators that can perform computations
+in addition, subtraction, multiplication and division but do aot have
scientific notation capabilites nrovides an opportunit, to explore another
method for performing computation of large products. This method
makes-use -of the distributive property of multiplication over addition.
That is, for any whole numbersa, b,andc,a X (b +¢c) =(a X b) + (a
X ¢).
To establish the need for this approach to a particular computation
students should try to compute an expression such as 19 x 5,876,213
with the calculator. In some way the calculator will indicate that this pro-

&
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duct is too large to display. (Mine flashes on and off.) A quick estimation
discussion will reveal that the product is a little less than 120 million and
more than 100 million. Then you’re ready to perform the computation
some other way: )
19 x 5,876,213 = 19 x (5,876,000 + 213) « renaming the larger number as a
convenient sum

= (19 x 5,876,000) + (19 x 213) using the distributive property of
multiplication over addition

= (19 x 5,876 x 1000) + factoring so that there is a power
(19 x 213) . of ten in the first expression
(Powers of ten are “‘convenient"*

N in this method.)

Now using the caiculator to compute 19 x 5,876 and 19 x 213 we
have : . )
(19 x 5,876 x 1000) + (19 x 213) = (111,644 x 1000) + 4047

= 111,644,000 + 4047

= 111, 648,047
~ ’ : - i . . .

Students can make up their own computations, estimate the resu’ 5,

carry them out, and then cxchange with other students as a check on th -
performance. They will be using some important mathematical ideas and
the calculator will be doing the **hard” part.

Square Roots, Cube Roots, etc.

The inexpensive four-function calculator can be used to find accurate
approximations for square roots, cube roots, fourth roots and so on. The
ideas are the same. The realistic interpretation of roots becomes apparent
with simple questions such as:

V4g: What numbe: m:ultiplied by itself gives 462
V%s: What number used as a factor three times gives 582
: What number used as a factor four times gives 857

Estimation that uses multlphcatxon facts that are relatively simple

should be an integral part of exercises suchas thesc For example

6" = 36and 7’ = 49306 < VA< T
or
3 = 27and 4’ » 64503 <Y5E<4

At this point attention must be given to place value ideas related to or-
der and detimal representation of rational numbers. Selecting numbers
between 6 and 7, or 6.7 and 6.8 or 6.78 and 6.79 involves important skills
and concepts that deserve the review and extension that this type of activ-
ity provides. The following procedure is an example of classroom tech-
nique appropriate to determining a rational approximatioa for V1048:
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Consider V1048 10* = 1000 - 1P =133

(without a calculator) (with a calculator)

So 10<V1048< 11
Try 10.1° ......withacalculator ........ 1030.301 (Not big enough)

10.2° ......withacalculator ........ 1061.208 (Too big)
So 10.1<VT048< 10.2
Try i0.15%...... 1045.6783 i, between

10.16% ..... 1048.772 ,
So 10.15<V1048 < 10.16
Try 10:188%..... 1048.1528;, betwecn

- W.AsT..... 1047.8432

So, correct to the nearest hundredth wé can approximate the cube root
of 1048 by 10.16, which is probably close enough for practical purposes.
In the meantime sound mathematical principles have been reinforced and
the computation is a breeze.

Prime Factorization

Loren Henry in the November, 1977 issue of School Science and

Matheriatics pointed out that calculators can be used efficiently to deter-
mine prime factorization for large (previously unmanageable) numbers.
Again, review or reteaching of the prerequisite concepts is necessary,
particularly in general mathematics classes. The definition of a prime
aumber as heing a whole number with, exactly twcwhole number factors
will determine the set of numbers from which to select trial divisors. This
should be followed by a discussion of the fact that any whole number can
be expressed as a product of prime numbers. Then students can pamcx-
pateina sequence such as the following: ,

To find the prime factorization of 1066, we begin by considering the first prime num-

ber, Z. 1066 has 2 as a factor since the last digit of the numeral is “*6"".

1066 + 2 = 833,50 1066 = 2 X 533 -

Now we proceed to find prime factors of 533. Since "33 does not
end in either “0,” **2,” *“4,” **6”’ or **8"’, 533 does not have 2 as a fac-
tor and a calculator isn’t necessary to determine this.

2 833 +2 2 is not a factor (not necessary to compute)
3 533 + 3% 177.66666 3isnot a factor
5 533+ 5 $ is not a factor (not necessary to compute)
7 533 + T%76.142887 7 is not a factor
11 833 + 1] % 48.454545 11 is not a factor
13 533+ 13 = 4} 13isafactor

So 533, = 13 x 41, Theother factor that was found is a prime number, as well. and
we're finished. Thatis 1066 = 2 X 13 X 41.

It is beneficial to point out to students that as the primes we divided by
became larger the results of the computation became smaller. This can be
used to determine where to stop in this procedure, and a quick glance at

’
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the caleculator reveals that to us. When the number that we’ve divided by
is larger than the result of our division, we’ve passed the square root of ,
the nimber. Any factors that could be detected now would have been de-
tected earlier by smaller primes, just by looking at the calculator. Sup-
pose we’re considering 521.

821 + 3 & 173.666666
. 521 + 7= 74.428571
’ 521 + 11 % 47.363636
521 + 13 & 40.076923

521 + 174 30.647058 : 3

-- . ' . 8521 + 19% 27.421052 -
© - 521 + 234 22.652173 We can stop here because

23> 22.652173.

This procedure works well with some numbers, those whose factors
aren't obvious. However, students should realize that the procedure isn’t
* appropriate fora number such as 3;000,000. .

3,000,000 = 3x1000000 by inspection.
1,000,000 has 10 as a factor six times. 5
. Each of the six 10's has 2 and § as factors. >
So 3,000,000 = 2x2x2x2x2x2x3x5x5x5x5x$x5
=2tx3I x$

.. . without & calculator at all!’ i

o

Patterns
H

Many interesting number patterns can be discussed with general
mathematics students. If they are allowed to peform the calculations
with a calculator there is more time to be spent on forming generaliza-
tions and testing hypotheses. The following are examples of some pat-

. . terns for students to examine. '

"

1. Products involving two 2-digit numerals where the numbers can be expressed +s 10a
: + band 10a + (10 ~ b) where a and b are natural numbers less than 10, The tens - -
- . v digits are the same and the sum of-the onesdigits is 1.

Sl : - ~. For example, consider 76 X 74 = 5624.
The tens digit is 7 Ix@+1) ’
- — - _ St et
76 % 74 = 6. 24
st e,
— Sumis 10 . 6x4
) Similarly, 48 x 42 = 2016and §5 X 65 = 4225,
A little algebra seveals that .
- Co. (108 + b) X [10a + (10 — b)} = 100a(a +.1) + b(10 — b) e
- Thus 65 X 65 = (100 x 6 % 7) + (5 x 5),
“ 48 X 42 = (100 X 4 X ) + (8 x 2),and ’ -

7674 = (100x7X%x 8+ (6x4)
The pattern can be used without being verbalized and it can be casily discovered by
- students at this level. The calculator can be used to check the examples and to pro-
o ride counter-examples for faulty generalizations.
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2. Patterns that encoutage students to guess what comes next are fun to use in the class-
room. Some students will be able to provide a reasonable mathematical analysis or
justification. Others may not know why a pattern works, but, nonetheless, will be

- amazed that it does.
For example, consider the following patterns and predict what comes next in €ach:
6x 6= 36 562~ 45 = nn
66 x 6o= 4356 556° - 445 = 111111
666 % 666 = 443556 $556° — 4445 = 1111i11)

12345679 X 9 = 111111111
12345679 ~ 18 = 222222222
12345679 x 27 = 333333333

The preceding ideas are just a few examples of appropriate activities
for students who are often unmotivated and even unable to performin a
satisfactory way. The calculator provides them with the opportunity to
«xplore mathematical ideas . . . successfully. Let’s use calculators with
kids who really need them!

4
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Using Calculators with Juniors

It all started with the class teacher saying she
would like to try something new! I had just Leen
to a workshop on the use of pocket calculators 1n
the classroom~—so we had a deal; although neither
of us realised how stimulating it would turn out to
be. .
The first stage was to obtain the calculators.
The school only had two, so she asked the
children. All the children who had them at home
brough? them 1n well in advance. One or two even
had them bought specially, and I was pleased to
see a dozen working calculators. The teacher had
even gone to the trouble of getting spare
batteries—an indication to the children of hLer
interest and concern. So we had one between two
children—just enough for the whole class 1o be
involved in some things, and enough for one each
in group work.

1 thought we might start with a trick or two just
to demonstrate the ‘number crunching’ power of
the calculator.

Choose any three digit number, e.g. 365;
repeat it, i.e. 365 365

divide by 13;

divide by 1L;

divide by 7;

and see if the arswer is the number you started -

with. {This also acted as a check to make sure they
were working properly.)

The children were interested afid worked on their

own for some time, trving different numbers. This .

gave us the opportinity to talk to individual
groups.

"Could it be done with 2 digit numbers (put 0 in the

middle)? single digit numbers? 4 digit numbers?
(No!)

Next we started ingroducing games in groups of
about four. Although we had copies of
instructions -for the games, by far the most
effective method was to introduce the game to a
group by plaving it with them. The first one we
used,-and still one of the most pepular, was simply
a ‘‘guess the answer’’ garie, played in groups of
about four. One child makes up a-sum of any sort.
c.g.

346+48+274
or36x18, .
or half 3178,
or double 468, etc.

That child then writes it down on paper in the

¢

&
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middle of the table and the .gther children write
down their guesses of the answer on the same bit
of paper. The child who invented the sum then
works it out on the calculator and whoever was the
nearest gets four points, the next three, and so on.
It is then the turn of the next person in the group.
~ Only experience can tell you the best way to play
this game, but we found it best if the questions
were not made too hard, and if the group stuck to
one sort of operation at each session. Halving and
doubling big numbers went down particularly
well, giving an opportunity for talk about large
numbers. v

Another popular game was **Zero’s the limit”’,

played by two children with one calculator.

First player enters a two digit aumber;

second player punches minus, then a single digit
number, then ‘=

each player punches minus, then single digit
number, then ‘=

but each number must be vertically, or

horizonially, adjacent to the previous number

pressed.

The ‘0’ button may not be used.
The player who makes a minus s:gn arpear on the -
display is the loser.

The sort of games where vou aim for a ‘goal’
are very adaptable for vse with a calculator. With
one group of four the goal was 29. We all sta: ted
with zero and could add any single digit number in
turn. If you were the one who ended up making
29, then you were the loser This game was very
popular and gradually the rules became more
complicated, highlighting knowledge of tables!

If you landed on an even number you lost a life;
if you'landed on an odd number yvou lost a life;
if you landed on the three times tabies you lost a
life;

if 'you landed on the four times table you lost a
life;

if you landed on the lhree or four times iable you
lost a life; ’

and so on, whoever lost the least number of hvcs
being the winners. )
Although puzzles and games were popular and

greatly increased the children’s awareness of
number, we both felt that if calculators were to
catch on and hol!d a permanent place in the
classrcom they should be of benefit for more than
just puzzles and games. )

Could they help with the children’s normal

Reprinted by permission from Mathematics. Teaching 93: 12-15; December 1980.
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mathematics—decimals, tables, place value, four
rules?
Could they help with work from their maths
schemes? ) '
Could they be used to enable children to tackle
real situations which would not have been feasible
without calculators, i.e. could they enlarge and
enrich the curriculum by .
a) highlighting which ar‘thmetic operation
should be used in various circumstances,
b) allowing the children to tackle situations
where the numbers and calculations
involved would otherwise have been out of
their grasp,

. €)
understood? i
We decided to tackle the last first, wondering how
much of the previous would be used. We need not
have wondered so much since, once the children
saw a need, they made great strides in their under-
standing of such things as large numbers, place
value, decimals and the four rules.
So, what situation. could we see, within the
" children’s understanding; which would benefit
from the use of calculators? We sat and looked
around and talked to the children. Alas. nothing
came up, until I walked past the gerbil asleep in his
cage and noticed for the first time, how fast he
breathed. So this became our starting point,
although in retrospect [ think there could have
been any number of them.. This started us on a
series of question and problems, some of them

" of interest for the children.

How many fimes does the gerbil breathe in a day?
How many times does the gerbil breathe in a vear?
How many times do we breathe in a day/vear/
lifetime?

How many times dues our heart beat in a day/
year/lifetime?

How many seconds in a day?

With the help of calculators these problems came
within the children’s grasp, although none found
them particularly easy.

For example, when- they tried ‘‘How many

not all the children (fourth years)}-knew how many
“seconds in a mznute. minutes in an hour, or hours
in a day—things that the teacher assumed they

information, part of it was consistently omitted it
the calculations and many did 60%24=1440
seconds in a day! Other children did not use the
multiplication function and just wanted to keep
on adding 60. They, of course, lost count of how
many 60s they had added.

Yet andther child did 60 + 60 = 120 seconds in
an hour, then 120x 24 =2880 seconds in a day.
Another did 60+ 60= 120, then added 120 twelve

throwing up answers which are not always

. quite eccentric, but none the less still holding a lot.

seconds in a day?"* it highlighted first of all that’

knew! Then because nobody wrote down this

- ) ‘ 90 -
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times on the calculator to get 1440, then added
another 1440 to get 2880 seconds in a day.
Peter tried:

60 seconds in | minute
120 seconds in 2 minutes
180 seconds in 3 minutes
240 seconds in 4 minutes
300 seconds in 5§ minutes
600 seconds in 10 minutes

1,200 seconds in 20 minutes

3,600 seconds in 60 minutes

7,200 seconds in 2 hours
14,400 seconds in 4 hours
28,800 seconds in 8 hours
57,600 seconds in 16 hours
86,400 seconds in 24 hours

These softs of problems highlighted three
particular kills:
a) solving a big problem by breaking it down
into manageable, steps:
b) selecting the appropriate operation on the
numbers;
¢) interpreting your answer—
e.g. How many seconds in a day?
Does 60x24 give us seconds in a day,
seconds in an hour, or hours in a day?
The sort of questions menticned above seem to
hold their own intrinsic interest although, of
course, they would not be suitable for all ages. |
have come across other, perhaps even more weird
problems that have been tackled.

<

How many kairs on your head?

How many narries in the telephone directory?
How many blades. of grass in a field?

How many wooden blocks in the hall floor?
How many words in a book?

How much does it cost to light the school each
year?

If 45,000 attend a footbail maich and there are
nine Sections, how many people in each section? If
there are 50 rows in a section, how many in a row?
One policeman is needed for each 400 people, how
many policemen needed for each section? How
many for the whole ground? At £15.00 per
policeman, how much will it “cost for the
afternoon? How muc is that on each ticket sold?

This last story was tried because the teacher was
concerned about how the children tackled division
problems, ,and ir fact her concern was most
justified, as illustrated by a singie problem.
Share 48 sweels between 16,children.

Half of the class of 11-year-olds tried 48+ 16=13

. on the calculators, whilst the rest chose to do

1648203333 . .. . Why? Because they really
did not understand the nature of division, or
because they are ysed to this notation:
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Whatever,_the reason, the children seemed a lot
happier about operating division after further
problems of this nature and stories like the above.
(At one stage we actually had to get the Unifix out
to prove who was right. 48 Unifix shared ount to 16
children gave them three sweets each. Half the
calculators showed not three but 0-3333 .
Some children were so sure they had done the
operation the right way round that they accused
the calculators of not working properly!)

Two other areas of mathematics crop up very
soon after children start using calculators. They
very soon come across decimal points on their
displays and, equally as soon, come across large
numbers. Because of their involvement with their
investigation they can be motivated and there
exists an ideal teaching opportunizy. Children’s
reactions to strings of decimals are interesting,
varying from ‘‘The calculator has gone wrong’’" to
ignoring the decimal numbers altogether. In fact it
seems that children and adults can operate happily
with decimals without a real understanding of
what they are.

When decimals come up for the first time with
Derek he asked what it 'vas. I said, ‘It is a tenth.
Do vou know what that is?”’

“No,”” he replied. “Is it something: like a
quarter?”’

Eventually he decided to ignore the decimals
completely in his calculations, although when he
pronounced his eventual answers he said, ‘‘Except
it’s a bit more than that really!”’ .

This is an important aspect of the use of
calculators in this sort of investigation. We found
that children already knew mathematics we had
not taught them, and also did not know things
that we thought they might or even should know.

One boy had wildly suggested, ‘‘How many
blades of grass on the field?’’ The teacher, never
one to miss a likely opportunity, said O.K. This
boy seemed to appreciate straight away the need
for sampling or grouping, i.e. he realised hé could
not count all the grass and he thought quite
quickly of using a small square to start with. Many
children would not see tuis for themselyes and it is
a key stage in investigations of this sort. He made
his sample in a square centimetre and then did a
second, only to find he had different answers. His
teacher suggested trying a few more. He did 5 and
then added them up and wanted to halve the
answer io get a good number. However, when he
did this he got a number far higher than any of his
original samples. His teacher suggested dividing
by five. He did this and came up with a decimal i
could not'understand. So two sources of work had
arisen—averages and ‘decimals—which could be
followed up in more depth at a later stage. -

He eventually decided to ignore the decimal
fraction—not a bad decision considering that the

a1,

PesotL}
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whole exercise was one of approximation—and
proceeded to a square metre. To his arnazement
the teacher now found out that this boy, normally
‘good at maths’, did not know how many
centimetres there were in a metre, let alone how’
many square centimetres in a square metre—so
out with the calculator and paper. Next came
measuring the field, stariing with a trial patch ‘““to
see if it would really work’". It did, so he measured
most of the field but left out the awkward
bits—another follow-up for the teacher.
Eventually came the first calculation involving
multiplying by 10s, 100s, 1000s and he ran out of
space on the display panel. So he and the teacher
had a long talk about what happens to numbers
when vou multiply by 10, 100, or 1000 and
eventually the child did the calculation without the
zeros. :

At the end of this, she knew further work was
needad on decimals (w hen is it not needed!), large
numbers, a\erages and area, but at least the child
had begun to see the need for such ideas. Further-
more he is now siarting to compare fields and
lawns, under trees and in the sun, gaining some
insight into what calculations are needed in real
circumstasnces.

After the class had been working on these things
for about a month we wondered where tc go next.
I tried to encourage the teacher to try the
calculator within the mathematics scheme.
However, she was still unhappy about the
children's use of the four rules of number. She
was sull doubtfui as to whether they could apply
them in real situations—a problem highlighted in
the recent APU report on 1l-year-clds. Could
children actually construct the apprupriate
mathematical model to help them solve real
problems?

We once again relied on the children for ldeas
and lhlS time we asked them to think of a ‘how
many’ or ‘how much’ ty pe question tha! would
give them large numbers in the answer, and that
involved the school or the people in it. This time
there was more rfesponse and the children
suggested problems that ranged from th quite
simple to the very complicated.. Some could be -
counted quite easily; others needed extensive use
of the calculators. All of them involved breaking
the problem up into manageable parts and
operating on these parts.

How much money did Alan, who bought a packet
of crisps and a bottle of Tizer each day, spend in a
week'?

How much in four vears in the Jjunior school?
What could he have bought instead—a
motorbike?

How much milk gets drunk each day/year in the
scheol? ¢

How many cows would the schoo! need to keep?
How many exercise books in the school?
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. One girl later branched out into

. How many pages? =
How many squares?
How much did they weigh?
How much did one square weigh?
How many squares made a gram?
How many bricks in a wall?
Later on a boy whose father is a bricklayer went
on to:
How long to make the wall?
How many journeys from the pile of bricks to
the wall for the hod-carrier?
. How many lorry loads? . .
- How many bricks in ¢ cubic metre?
How many doors in the school?
Then later:
How many hinges?
How many screws?
How much do the children in the school weigh?

Do they weigh the same as a double decker bus?

An elephant?

Does it give false confidence to some? Timothy
played the guessing game by himself, with a chart
like this. .

CALCULATOR

GUESS - CHECK

INUMBER| OPERATION

43 +1 °
+10 ‘
+ 100
+ 1000
-1
-10
X1

x 10
% 100 3
+50 '
+150
+250

ec. ..

He was not guessing but simply working it cut on
the calculator siraight away. This seems 1o be
where the teacher has to make a judgement, as she
has to about many activities in the ciassroom. as
to whether the calculaior and/or the activity is
suitable for that particular child. It might well be
that a group game, plaved with chiidren of his
own ability, could stop him ‘cheating’ and still
increase his confidence.

Thoughts after two months work

How exciting and interesting it has all been.
How it has converted the teacher to an investi-
gational approach to mathematics.
What a liberating force the calculatots have
been, énabling the children to tackle
calcuiations that <vould have bteen tedious.
time-consuming and error-prone without them.

. How important is the teacher’s attitude, giving

92

the children time, taking their ideas seriously,
taking time for discussion and being interested
in the process as well as the answer.
The importance of di‘cussion about sampling,
and grouping, writing down the calculations
beforehand if- possible, so avoiding the
situation of
. ““How did you get that answer?"’
“Er, don’t know, forgotten, er . . . think it
was...”
i.e.,-planning the investigation and breaking it
into manageable chunks.
How it Caabled the children to think of a couple
of problems and gave them opportunities to
solve them.
How the less able children developed an
enthusiasm, especially with the games.
How, by watching the children use the
calculator, a teacher can check how sure a child
is with the operational side of the work.
How hesitatingly are the buttons pressed?
Are errors made with x and +?
Are they fluent with the = symbol?
How this is leading onto other things in that the
children are asking about the buttons which are
not being used {i.e. memery, /7, x°, %).
in fact i1 seems important to have calculators
permanently available as an essential tool to be
used as occasion arises in classroom discussion
and work. .

J1
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_Calculator Use In The Middle Grades

Charlotte L. Wheatley

Department of Education -
Purdue University >
West Lafayette, IN 47907

RATIONALE

The world is presently experiencing an explosion of electronic technol-
ogy which is threatening to render obsolete much of what we teach in
school mathematics. Electronic calculators, unknown in the early 70’s,
are so prevalent’that they can be found in nearly every home or office.
Because of their low cost and widespread use in society, calculators have
the potential of reshaping the mathematics curriculum in our schools.
School practices generally lag far behind societal changes and-the utiliza-
tion of calculators in schools is no exception. While on-the-job and in-
the-home use of calculators to perform complex computations is nearly
standard, schools have yet to incotporate @alculators into the mathe-
matics and science curricula. This must change. .

When asked to identify problems in schools today, teachers quickly list
pupil apathy and lack of motivation -as a major concern. Studies by
Wheatley ' and Wheatley et. al. * show that the calculator is a highly
motivating instructional tool. Teachers report that pupils will tackle
problems_with the calculator they would never attempt otherwise. Activ-» i
ities presented later in this article provide examples of motivating mathe- o
matical material made possible through calculator use. . - -,

Often students are not successfulin learning and applying concepts be- ’
cause the need to compute with paper and pencil may obscure the tar-
geted mathematical ideas. However, with calculators to perform burden- . (;
some computations, the learner can focus on concepts, applications, and
problem solving. The advantage is narticularly evident for slow learners
who are greatly aided in learning by a computational device. Likewise the -
more capable students can focus on problem solving heuristics and ad- -
vanced topics. Teachers can present problems using realistic data (large
numbers, decimals) when calculators are available to perform complex
computations. These factors allow emphasis to shift from learning com-

“putational rules to applying mathematics in meaningful contexts. Thus .
we see that calculators in the cl3ssroom can be highly motivating and fa- R

1. ‘Wheatley, C. “Calkoulator Usc and Problem Solving Performance.”” Journal for Research in Mathemaucs Educe-

Hon, in piess. a
2 Wheatkey, G.. Shumway, K., Coburm. T.. Reys. R.. Schoen, H.. Wheatley. C, and White. A, ~Cakulators 1n

Elementary Schools,™ Anih Teocher, 27, (Septemiber 1979). pP. 13-21.

Reprinted by permission from School Science and Mathematics
80: 620-624; November 1980.

-, |
93 - , - -

92

-

I [ , .




-

>

- _litative of learning. As Phillips * says we must, Zudge student
tnto organizing things in his head putting the pieces together to build an
e erenlarging structured whole . . . .”’
Described below are four actwmes which capitalize on the calculator
i _as an instructional aid. A brief description of each activity is presented _
with suggestions for the teacher. These activities may be adapted to other
grade levels or ability groups.

CALCULATOR ACTIVITIES AND SUGGESTIONS
FOR IMPLEMENTATION IN THE CLASSROOM

Activity One:  Estimating sums and addends

Purpose: To develop estimation skills and order relations
"Grade Level:  May be adapted to any grade
Procedure: 1. Present the problem using the diagram below.
N
? \
- - ~
-~ ~
-~ ~N
Q
3
137 450 470
137 + =

If the-ball must land in the range shown, what dis-
tance must the ball be kickéd? What number addeu
to 137 will put you between 450 and 470?
z 2. Write suggested answers on the board. .
3. Encourage pupils to exploreall possibilities. o
4. List allanswers. i
s. Ask, “How many answers are possible? Why?”’
Extension activity (thultiplication and division of whole
numbers) mEs
1. Usethe representation shown i
Present problem 56 + __ = ,
o Find a whole number “htch multtphed by i~ se
- 56 puts you between 750and 900., ~
. 2. Write suggested answers on the board.
3. Obtain agreement on the solution set.
4. Ask, ‘““Why are there only three numbers
in the soluiion set?”’
5. Supply students with similar problems to
solve.
3. Phllips. ). “Go Back'to the Beginning? Wherc *s That?"* School Scrence and Mathemetics, LxxX(Fcbtury 1900),
9. 138.
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Activity Two:
Purpose:

Grade Level:
Procedure:

Activi.ty Three:
Purpose:

Grade Level: '
Procedure:

\ ' '.\;

Probl\ msolving '

To develop problem solving skills, to reinforce the use

of mettic units, to illustrate the use of mathematics in

health education:

Grades 510 8

1. Present the problem.
Your heart usually pumps about 65 milliliters of
blood per heart beat. If your heart beats 68 times a
* minute, \how much blood is pumped in 1 minuté? In
1 hour? na 24-hour day? In 1 week?

2. May supply hints below: /

a. Could\ ou make a chart?

b. Try ﬂmphfymg the problem,’e.g., suppose the
heart beats 2 times a minute.

¢. Isyour answer reasonable?

3. When Paul i 1§ jogging, his heart beats 145 times per
“minute. How\much blood does his heart pump in 1
minute? In 16 mmutes"

4." Let students d15cuss their solutions.

L)

5. Presenta dszerent problem such as:

Sarah’s heart pl\xmped about 4.7 liters of blood in !}
minute. How many times was her heart beating?
6. May supply hints below:

a. How is this problem like the problems above? .

How s it different?
b. Try making a guess and checking it in the
problem. i
c. Is your answer Between 60 and S0 beats per min-
ute? i
7. Hava students find their own pulserate. Ask, ‘‘How
much blood does your heart pump per minute?”’

'
3
i

\
Apphcanon

To make compansons using division, to reinforce the

use of metric units, ang to dévelop the concept of rate.

Grades6to 8

1. Present the problem. Whose vehicle is the most en-
ergy efficient?

2. Discuss co:nputation of kxlometers per liter using the
formula below: ;
Kilometers. + Number of hters vsed = Kilometers

per liter

»

=




.
" L3

3. Provide students with the chart below:

Distance Gas Used Kilometers

Per Liters
> | Mr.Remo 161 kilometers 11lhiders | = —
"1 Ms. Kessler 435 kilometers .. 28liters - -
Mr. Carter 289 kiiometers 24 liters -

Activity Four:
Purpose:

Grade Level:
Procedure:

H
’

)
i

)

4. Ask, *“How does your family car compare?”’

5. Challenge stidents to find the kilometers per liter rat- \
ings for the leading automobiles.

Developing the concept of decimal

“To develop the concept of .1, to compare decimals, to de-

velop decimal ordinal sense.

Grades5to ¥

1. Teacher states, *Let’s teach the calculator to count.
PICSgl +===..." ‘/
(Most calculators have a constant addend and will
count but you should check the logic and keystroking
of calculators being used.) ’

“Count to 100 by ones.”

. 2. *Now let’s teach the calculator to count by tenths.

— -

Press.l = = = ... Countto 10. How many times did
you press =2
Does 3.6 come before or after 3.4?
, Does 5.1 come before or after 1.5?
Which is smaller;, 6.5 or 3.7? Lt
Where is 4.2 on the nuraberline?”’

.-
~

Many excellent calculator activities can be found in the sources below:

3. Have the pupils count by tenths again.'Ask, ‘““When
counting by tenths, what comes after .9?

2.0? 2.5? 297 T ‘ / v
.4. Have pupils count back from 10bytenths. . < *
100-.1==5..

i

5. Ask, ““What comes b'cforc 2,07 3.17 ..9? 107
6. The concept of hundredths can be developed in a sim-
ilar manner. : ‘

o

4
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SUMMARY

Calculators have the potential for reshaping our computationally
: oriented curriculum. Its place in the classroom is presently unknown. But
4  itclearly has a place. The activities in this article suggest ways calculators

Y " can be effectively used to develop four types of mathematical thought.
&
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CALCULATOR LESSONS INVOLVING
POPULATION, INFLATION,

AND ENERGY

By ERNEST WOODWARD

and THOMAS HAMEL
Austi. Peay State University
Clarxsvilie, T 37040

One of the joys of studying mathematics
comes from the surprising results that are
often obtained. An example of such a situa-
tion is the Rule of 72. This rule states that
if money is invested at r percent com-
pounded annually, the zmount will double
in approximately 72/r years. On the other
hand, if the interest is compounded semi-
annually, the doubling time is approxi-
mately 70/r years; and if the interest is
compounded instantaneously, then the
doubling time is approximately 69.3/r
years. In the interesting article “The Rule
of 72, which appeared in the November
1966 issue of the Mcuthematics Teacher,
Brown argues that these results aré appro-
priate for “small” r. His argument, which
makes use of logarithms, ic not reproduced
here.

The purposes of this article are (1) to
show how a hand-held calculator can be
used to help students discover the Rule of
72 and (2) to indicate how the Rule of 72
can be used to investigate problems in-
volving population, inflation, and energy

. reserves. The lessons described in this pa-
.per are lessons that each author has used
" individually vith both college aad second-

ary students.

Lesson 1

The first lesson is introduced with the -

story about the king and the inventor of the
chess game. The king wishes to reward the
inventor, who is also a mathematician, and
asks how he can do this. The mathemati-
cian-inventor asks for the wheat obtained

~,

by putting one kemel of wheat on the first
square of the chessboard, two kernels on
the second square, four on the third square,
eight on the fourth square, and so on for
the entire sixty-four squares of the board.
The observation is made that the total
amount of wheat on the chessboard is

1+2+224 2%+ 429
grains, and

l+2=3=2"-1,
1424+22=7=2"—],
1424224+ 2=15=2-1,
14+24+224+24+2=31=2°-1,

14+24+22 4.2 42" =2"—],

and thus,
1+24+22+22+--4+29= 2%~ 1.

The statement is made that 2* kernels of
wheat is estimated to be approximately 500
times the total present vearly world wheat
production (Bartlett 1976).

The purpose of introducing this story is
to emphasize that in the case of a continu-
ous doubling circumstance, the numbers
get very large very quickly. Some students
are interested in determining how large a
cumber 2* is. For those students having
calculators with an x* function, the calcu-
lation of

2% = 18447 x 10

is simple. Students are impressed by the
rapid change in the display from 2'¢ io 2%
to 2%,

Next, the formula for compound interest
with inte.ust compounded yearly is devel-
oped. This formula is

Reprinted by permission from Mathematics Teacher 72: 450-457;

September 1979.
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A= p(l *1 00) :
where A, represents the total amount at the
end of n years, p represents the principle,
and r percent represents the rate. [his re-
sult is derived in a typical textbook procc-
dure.

Next, inflation is discussed. The point is
made that a constant annual inflation rate
is an application of compound interest.

- Students are asked what they think the cost
of a new bicycle would be in the year 2146,
assuming it now costs $100 and that there
will be a 6 percent annual inflation rate.
(Most students predict less thaa $500,
whereas the actual amount is over

" $1 500 000.)

No attempt is made to find the solution
to the problem of the cost of the bicycle in
the standard way, that is, an evaluation of
A, = 100(1.06)**. Such an evaluation
would involve the use of logarithms (which

_ some students have not studied) or the use

" of the exponential function y* (which some
calculators do not have); but these ap-
proachcs would detract from a strategy that
is perhaps more important than the numer-
ical result.

The preferred solution to the blcyclc
problem, and other similar problems. ne-
cessitates introducing the concept of dou-
bling time, that is, the number of years it
will take a certain amount of money to
double in value when invested at a com-
pound yearly interest rate 6f r percent. Stu-
dents are easily convinced that the original

- amount of money is arbitrary; therefore S1
is used. To find the doubling time, it is nec-
essary to find n such that

) 22,

A.=1(1+ 100) (HW

Students then calculate n's for several
given possible r's. For example, if r = 6
peicent, the following values are obtained
with the calculator showing that n = 12
when 7 = 6 percent.

(1.06)' = 1.06
(1.06)* = 1.12
(1.06y =1.19

100

o~

_ L I -

(1.06)" = 1.90
(1.06)" = 2.01

Thes ‘ata are recorded in table 1. Circled
numerals are determined by the use of the
calculator and are integral approximations
for n. Nex:, the students are requested to
investigate this table. Some students will
indicate that in each case the product of the
percentage and the doubling time is 72.
This conjecture is checked by the class. The
question posed is How could we calculate
the doubling time, given the rate? Students
typically respond that the doubling time is
72/r.

TABLE 1
Doubling Time in Years
r (Approximately)
3 @
4 @
6
8 ®
9 ®
12 ®
18 @
24 ®

Returning to the topic of inflation, stu-
dents are asked to help complete table 2.
The entries in the first two columns are
given and all others are completed (circled
numerals), assuming a 6 percent annual in-
flation rate. For this example, the doubling
period is 12 years (72/6). The entries in the
third colunin are doub!e the corresponding
entries in the second column. since one
doubling period will have elapsed. The en-
tries in the fourth and fifth columns are de-
rived similarly. The date for the last col-
umn, 2146, is 132 years (11 doubling
periods) after the date for the previous col-
umn. Hence, the entries in the last colimn
are found by multiplying the correspond-
ing entries in the previous cclumn by 2.

The world population in 1975 was ap-
proximately 4 000 000 000. or 4 X 10°, and
the annual population increase has been
fairly constant &t about 2 percént (1976

.Census, p. 866). Table 3 is then completed,

assuming the rate of increase in population
will remain at 2 percent. Observe that the

38




TABLE2
Costs at a 6 Percent Annual Inflation Rate

2002 Cost 2014 Cost

Item 1978 Cost 1990 Cost
Soft drink @
Movie ticket @ @
Bicycle ,
Compact automobile $8000
Modest house $30 000 $60 000

®» ®
OEENC
()

@ T
$16 000 @ $65 536 000
(s120000) $240 000 $491 520 000

doubling time is 36 years. As before, the
circled numerals are calculated by the
-class. Next, the observation is made that
the total land area (including inland lakes
and rivers) is approximately 1.36 x 10*
square meters (1976 Census, p. 867). As-
suming a constant 2 percent population
growth, there would be approximately one
person for each square meter in the year
2515. A calculator is not needed to com-
plete this table but it does make the com-
putation easier.

A rather complete class development of
this lesson takes approximately one hour.
At times, only portions of the previous two
tables are completed in class, and the stu-
dents are asked to complete these tables as
an out-of-class assignment. (In one in-
stance this lesson was used alone, without
the next lesson, when only one hour of
class time was available.)

The first class is ended by presenting the
students with the following problem:

Many years ago a fictitious king had
2000 barrels of wine in his cellar. Given
that his court consumed 20 barrels of wine
last year, and past increases in consump-
tion would indicate a 12% annual increase,
how long will the king’s wine supply last?

The students are asked to guess at a solu-
tioz and then challenged to solve the prob-

@

lem by whatever means they can devise.
Most students guess many years more than
the actual answer of approximately 22
years. Sometimes students are able to solve
the problem correctly prior to the next class

TABLE 3
World Population Assuming 2 Percent Growth Rate

Yeat Predicted World Population
1975 4x10*




meet'u';g but only after considerable effort.
The difficulty they have solving the prob-
lem generates considerable interest in the
methods that are developcd in the second

lesson. )

l..esgson 2

The slccond lesson is involved with the
investigation of problems concerning how
long energy reserves (coal and petroleum)
would last, assuming a constant annual
percentage increase in usage. These prob-
lems (c.g., the wine problem) are much

“more complex than the problem of deter-

mining how much energy reserves would
be used in a given year (e.g.. the inflation
and population problems). In order to solve

™ these more difficult problems easily, let x

be the initial amount of fuel used. x, the
amount of fuel used in the ith year after the
initial ‘year, and r = 6. Next, the data in
table 4 are presented. Of particular interest
is the fact that

2 X, = ZEXI

-ty
and

zx, =) Ex, 4?x

=13

These data are determined by use of a
hand-held calculator. For example, x, =
(1.06)°x. Many students recognize that the

numbers 1.06. 1.1236, 1.1910, and so on are
the same numbers that were obtained in
the completion of the doubling-time table
of the first lesson, using r = 6.

The observation is made that for 1 =i =<
12, . .

Xioza B 2Xy012 = 4X, .

This result is to be expected since the dou-
bling period is 12 years when r = 6. Of par-
ticular sxgmﬁcance is the fact that ¥\2,x, is

the amount of fuel used in the first dow v
bling penod that T3, x, is the amouat "of.

fuel used in the second doubling period,
and that T%,.x, is the amount of fuel used

in the third doubling period. Letting.

2 x, = y, the amount of fuel used in the
second doubling period is aoproxxmately
2y, the amount of fuel used in the third
doubhng period is approximately 4y, the
amount of fuel used in the fourth doubling
period is approximately 8y, and the amount
of fuel used in the nth doubling period is
approximately 2"-'y. These conclusions
suggest that it is important to develop a
technique for finding y without using the
rather tedious computation presented
above.

A point is made that ¥}, x, is the sum of
the terms of a geometric progression and
that it is easier to approximate this sum by
using an appropriate arithmetic series. If
a, = x, a,; = 2x, and d = 1/11(x), then

TABLE 4
x, = 1.06x Xy3 % 2.1329x % 2x, Xyy ke 4.2919x & 2xyy # dx,
Xz % 1.1236x Xy % 2.2609x % 2x, . X6 % 4.5494x % 2x, % 4x;
Xy sk 1.1910x Xys 2.3966x * ZX) X s 4,.8223x % 21,, e 4X)
Xq % 1.2625x - X1 % 2.5404 & 2x Xag % S.1117x % 2x,4 % 4x4
xg % 1.3382x Xy % 2,6928x & 2xy X3 % 5.4184x # 2xyy % 4x,
X¢ - |.4185X X118 e 28543X s sz X3 e 5.7435x e leg L] 4X6
x5 % 1.5036x . Xyg s 3.0256x & 2x, Xy % 6.0881x % 2xo & 4x;
xg % 1.5938x" X30 % 3.2071x % 2xg X3z % 6.4534x s 2x20 % 4x¢
Xg % 1.6895x X3y % 3.3996x % 2x4 X3y % 6.8406x % 2X;, % 4Xy
Xyo = 1.7908x Xa3 % 3.60352 % 2x,0 X34 % 7.2510x & 2x33 % 4xy0
x5 & |,8933x Xy % 3.8197x = 2-‘“ Xys % 7.6861x = 2X2) L] 4X”
X2 % 2.0121x X34 #4,0489x * 2xy; X3 % 8.1473x e 2x34 = 43

g x, = 17.8819x E, X, = 35.9832x

=t Jl—l)

g ™ 72.4042x
i=2s
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a, = 1:00x
a,= 1.09x 4
a,= 1.18x
a,= 1.27x
a, = 1.36x ¢
.a,=1485x"
. ay=1.54x
a,=1.63x
 a,= 1.72x
a,,= 1.81x
a,, = 1.90x
a,;=2.00x J

- pared with the corre-
sponding values of x,
through x,,.

12 .
$a= 2EZ 2= 2x 122 18x.
-t 2 2

Since 32,x, = 17.8819x and 12.a = 18x,
using 32,4, in place of Ti,x, results in an
error of less than 1 percent, ’
J181x
17.8819x

& .
The important generalization is made that

y = 3/2(xm), where m is the length of tue

"doubling period. —

Purists are probably shocked that an
arithmetic series is used to approximate a
geometric series on the-basis of a single ex-
ample, but students are willing and able to
accept this obvious impreciseness for the
sake of convenience. Also, estimates of
available energy reserves are questionable,
at best, as a result of ecology constraints,
prices of a given resource, and tech-
. nological advancements. As long as the
computed results are accepted for the
rough estimates they are, the authors feel
justified in using reasonable mathematical
approximations. : . .

o

The lesson is continued by
letting A be the amount of fuel available
(estimated reserves) and

letting 7 be the number of doubling peni- -

ods the fuel will last.
The contention is that

Amy+2y+4y+8y+---+27y
my(l+2+4+8+---+2")
my(2-—1).

These values are com-’

7 i‘-==2"-—1 and
b 4

r=dil
y

In 1977 the world petroleum reserves
were estimated at about 6.46 X 10" barrels,
and about 2.17 X 10" barrels were con-
sumed that vear (Energy Statistics 1978).
Jointly, table S is completed (circled nu-
merals) using the information given in the
first three columns.

The only column in table 5 that is diffi-
cult to complete is the next-to-last column
giving values of n for which 2" = A/y+ L
Some siudents have studied logarithms
previously and are able to quickly recall
that the solution is given by - *- - - -

A
log (y + 1). c
log 2

For those students unable or not wanting to
use logarithms, the graph of f(n) = 2 (fig.
1) is used. To make sure that the students
recall what the graph of f(n) = 2" looks
like, a few of the points are plotted before
placing a transparency of the graph on the
overhead projector. From the value of
A/v + 1 on the f(n) axis, students are di-
rected to go horizontally to the graph of the
function, then down vertically to find the -
value of n such that f(n) = A/y + 1. For ex-
ample, if 4/y + 1 = 1.55 then n = 0.63. The
values of 7 in the table are those found by
using logarithms; therefore, use of the

n=

- graph may result in values of n being

slightly different (but still within 0.1) from
those listed in the table. Errors caused by

, the impreciseness of the graph rarely bave
a significant effect on the value of mn.

The problem of coal resources is studied
next. In 1974 it was estimated that the U.S.
coal reserves were about 4.34 X 10" tons
(Coal Resources of the Unised States 1974),
and approximately 5.58°x 10° tons were
consumed in 1975 (Monthly Energy Review
1978). Table 6 is completed by the students
as a group.

Recent annual increases in usages have
usually been under 5 percent; however, it
appears this figure may increase to 10 per-




TABLE 5

s

The last few minutes of the second lesson
are spent discussing some of the results ob-
taincd and the implications of those resuits.
In particular,

1. if inflation increases at the oresent rate,
-the money system will probably need to
be replaced by another one prior to the
year 2100;

2. famine, war, disease, and so on will not
allow population to get to the level pro-
jected for 2515; and

3. as reserves of fuel become depicted, the
fuel becomes harder to get, thus driving
up prices and decreasing usage.

(The students were_delightfully per-
ceptive, and a couple of their comments
«tand out."One student wWho had solved the
wine problem, after considerable effort,

said of the prczcedurc developed in class for
ST

Amount
Used in
) Estimated Annual First No. of No. of
- Petroleum Use Last Rateof  Doubling Doubling Doubling  Yrs. Fuel
* Reserves Year Increase Time Period ) Periods ~ Will Last
A x r ,,....7'3 y= %(x)(m) §+l n* mn
646%10'' 217X 10 (1] ee oo oo oo @
646X 10" 217x 100 2 (ri7x0%) @ @
646 x 10" 2.17x 10" 4 5.86x 10" ‘2,10,\ @
646 x 10** 217 x 10'° 6 ‘ 12 ’ ‘ 391 x o } @
o ®
cwnor s w () ® ©
* Where 2 --f,— +1 -
** Does not apply
cent or above because of the shortage of  solving such problems, “Boy, it’s a lot eas-
petroleum. ier that way.” In a discussion about how in-

accurate the estimate of reserves might be,
the students deduced that even if there is
twice as much of a resource available as the
amount estimated, the fuel will be depleted
after only one more doubling period. After
considering this dilemma for a few seconds,
another student said; “Changing the per-
ceat (rate of increase) is the only solution.”
That statement sounds a lot lixe the mes-
sage energy experts have been giving.)

" The second lesson is closed with a hypo-
thetical example Albert Bartlett used in a
talk the authors heard him give. In his ex-
ample, there is bacteria in a bottle and this
bacteria doubles in amount each minute
and the bottle is large caough to last one
hour. If this situation originates at 11:00
o’clock, then at

11:01 lots of room;
11:02 still lots of room;




80

()

f(n)

20
' Z
10 —

.—//

1 2 3 4 . 5 6

n
- Fig.'}. Graph of f(n) = 2", ‘ .
11:59 still lots of room . completed in about two hours. Portions of
(only half full); the .tables could be completed in out-of-
12:00 full. class assignments, thus cutting down on

) . ) ) ] class time. For the most part, students who
Bartlett said that right now in the inflation,  were capable of understanding compound

population, and fuel situation, it is 11:59. interest seemed cdpabie of understanding
Evaluations and Conclusions the lessons. Students did react favorably 10 .
the problems studied. l

As indicated earlier, the authors used These lessons dre recommended y] that

these lessons with a variety of students  they
(both coliege students and high scizool stu- ‘
dents) and found that the lessons were 1. concern interesting and vital prohlems, . 6

{
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TABLE 6 ™
Amount
Usedin e e e
Estimated Annual First No. of No. of
Coal Use Last Rateof Doubling Doubling Doubling  Yrs. Fuer
Reserves Year Increase Time " Period Periods  Will Last
A
A x r ,,,-?;Z y--g—(x)(m) 7-!-! n® mn
434310 © S5S8x10* . O ve b se ve
434X 10" SSEx10F 2 @ (o1 x 10°) ,
a3xion  SsExjot 4 (ts1x 10°) 4.89
oo s o @
2
434x 10"  558x10° 9 ( 8 ) ( 6.70 x 10° )

.

* Where 2" = 1;— +1
** Does not apply )

. 2. relate mathematics to evaluation of so-.

cial and scientific problems. and

3. give an exampie of a situation where use
of a hand-held calculator makes the in-
terpretation easier.

o
_ The authors suggest the possibility of in-
vestigation of similar problems involving
the availability and.use of other natural re-
sources, such ,as aluminum and copper.
' Teachers coutd give students data on esti-

* - mated resources,and current usage patterns
or ask students to fin¢ the information in

. thelibrary. ,

REFERENCES
Brown, Richard G. “The Rule of 72." Mathematics
Teacher 60 (November 1966):638-39.
Bartlett. Albert. “Tt  Exponential Function, Part 1.
Physics Teacher & ucicber 1976):393-401.
Department of Enc. . Monthly Energy Review {No-
vember 1978). - 4
Geological Survey Bulletin 1412. Coal Resources of
the United States. Januvary !, 1974, p. 33.

106104

Institute of Gas Technology. Energy Staustics vol. l:
no. 4. Fourth Quarter 1978, p. 45.

U.S. Bureau of the Census. Stanstical Abstract of the
United States: 1976, 9Tth ed.. (Washungton. D.C.
1976): pp. 866-67.

RELATED READINGS :

Dunn, Samuel L., and Lawrence W. Wright. “Models
of the U.S. Economy.” Mathematics Teacher 70
(January 1977):102-10.

Dunn. Samuel L., Ruth Chamberlain. Patncia Ashby.
and Kenneth Christensen. “People. Pecple.
People.” Mathematics Teacher 71 (April 1978):283-
91.

Vest, Floyd. “Secondary School -Mathematics frem
the EPA Gas Mileage Guide.”" Mathemaiics
Teacher 72 (Janpary 1979):10-14.

Wagner, Clifford H. “Determining Fuel Consump-
tion—an Exercise in Applied Mathematics.”
Mathematics Teacher 12 (February 1979):134-36.

Weyland, Jack A.. and David W. Ballew. “A Relevant
Calculus Problem: Estimation of U.S. Qil Re-
serves.” Mathomatics Teacher 69 {February
1976):125-28,

The authors are iudebted to Mrs. Gene Mofgan for
her assistance in the preparation of this manuscnpt.
®

'3

e S, —



¢

~.
T e
>
.
’ g
“\
+
/)/—“'
-

%
.
.
.
<

-0




THE ‘CALCULATOR ‘IN THE CEASSROOM:
REVOLUTION OR REVELATION?*

- - [}

- \\ * '

by . ’ I s

» ’ M

- @

T

Leonard E. Etlinger
Associate Professor of Currjculum and In-~truction
and Director of Téacher Corps
Chicago Stagg’Univérsicy .
Sarah Krull N
: Director of Teacher Corps
. St. Louis University

LN

,/
—
s /’/’ ) T m— '
° ’/////// Jerry Sachs v
— Past President
//,,,w//// *  Northeastern Illinois University

g

Theodore J. Stola;z
Professor of Psychology
Chicago State University

*This material was prepared with the support of the National Science
Foundation Grant Number SER 78-11916. Any opinions, findings, conclusions
or recommendations expf%gsed hereéin are those of the authors and do not
necessarily reflect the vi ws of the National Science Foundation. In the
operation of this and other projects, Chicago State University has not and
will not discriminate against any perscen on the grounds of sex, age, creed,
color, or national origin.

109

A
¥

106

3




i

v

\ THE CALCULATOR-IN. THE CRASSROOM:
: REVOLUTION OR REVELATION?*

1"

I was an elementary s~hool student in the late 1930's and attended the
Ernest Prussing Elementary School in Chicago' s far- northwest side. It was
a rather new school then. It had an e%cellent reputation for achievement
‘and, as I recall; it was- provided with-the best of everything-that could be
provided during: the great depression. We had one of the fivst "ad justment
teachess” in Chicago and I remember taking a lot of tests that ultimately
resulted in my skipping a grade. But what I noticed about the adjustment
teacher (apart from the fact that she was an attractive young woman) was
that she used a stopwatch and a slide rule. It was the first time in my :
life that I had seen such things.~ I remember that -I had to build up my
courage to ask her about them -and, she demonstrated them to me. I had no
“use for a stopwatch, but a ruler that could do arithmetic seemed like a
miracle. I had to have one. R

5 ’ ’ ~ Ted Stolarz ) -

The microelectronic revolution is with us and the world will never be the
same as it was before it started. That magi¢ ruler that could io
arithmetic is now obsolete. The hand-held pocket calculator car do
everything the slide-rule could and more. Calculators can do arithmetic,
algebraic, trigonometric, and statistical computations and do them faster

“than they can be done by the algorithms'most students learn in school.‘

What is more, they operate with an amazing degree of accuracy.

There are those who are disturbed by this and who feel that chiildren should.
not be allowed to use calculators because if they do they will not learn
the basic operatigns of arithmetic., The danger is there, of course, but’,
the calculator <when used widely under the direction of good teachers-can
generate interest in learning the facts and skills of mathematicss ce
these skills are learned, the calculator, especially the programmable one,
can take a great deal of the drudgery out of computation.

K 3 H .
To illustrate this point consider the "ruler that could do arithmetic.”
The slide rule, which has been available for more -than 350 years, makes a
number of calculations quite easy. And, until the recent advent of the

x

-hand-held calculator, it was always standard equipment for engineering and

science students. The same fear that today accompanies the idea’ of using
calculators in the classroom also was prevalent when the slide rule began

"taking over” the calculating process.

But the slide rule did not destroy students' ability to do fundamental
operations longhand. It did not destroy their ability to do computation
without it because to use the instrumerit skillkully, one had to know the
process. The slide rule simply gave an approximation to, the answer without
some of the lq?g computation, >

)

Just as the slide rule did not destroy computational ability, the
calculator will not do so either if used properly. Many facets of .
matHematics caf be enhanced and supported by the use,of calculators,
especially the processes of estimation and approximation (for which the
slide rule was often used).

110 ’ ) .
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complicated ‘sequence in which it does one part over and over a set number
of tinmes or until a predetermined value has been rzached and then goes on *®
—_— to do other things. It can store information in what are called memories
. and recall whatever is needed for use whenevgr/it is needed. This means 8
that the programmable calculator, unlike the ordinary calculator, can do
sophisticated operations without needing the operator to initiate each
step.

— T e TaT e T et et e e e o - AT e T e I R - . - L%—— ——— .
However, it doés these things only if one can "teach" it to do so. One
must make the calculator "learn" the separate steps in a sequence. Every
mathematical step is possible on a nonprogrammable calculator. But the

‘adﬁéntége of the programmable calculator is its ability to "learn” to do

“many operations with processes not possible on a nonprogrammable .

*  calculator. It is important to note that if one does not understand the

.’process he is trying to program, the programing is a hopeless task., The
progfammer must identify and plan sequential steps for solving the problem
as well as plan the order of ar1thmet1c operations. Thus with the
programmable calculator, even more than with an ordinary calculator, the

* thinking process of the user is primary if he is to tuild his own program;

. Most of the applications of mathematics to real problems involve several
overations. The programmable calculator permits @s to address many .
different real problems without spending hours and hours in longhand
computation. In addition, the use of.the programmable calculator helps to
develop skills in designing algorithms for thegsolution of problems which

orecur with different inputs. These skills wii! be as essential as basic 58
arithmetic in the 21st century. . i
The programmable calculator or computer can also enable a person to-Bse a &

special program (prepared by experts in a certain field) to do a complex
operation he cannot do longhand. For example, there are statistical
packages which can be very useful in providing results which are meaningful
to the user even though he does not have the statistical training to do the
- computation or program the'calculator. ¢

The use of the programmable calculator in a creative way’ (i.e., having the
user develop his own programs) is preferred over using the calculator or
cdomputer to rum existing programs. Several examplés of creative uses of P

the programmable calculator can be made. For instance, students cah gain s
several geometric insights by using a programmalple calculator. Sappose R :
there are youngsters at the level of using basic geometric formulae for - . N
lengths, areas, and volumes. . 2 . ;
+» Cénsider these problems for thé student to explore: ’ . )
. . - A
1. How does the area of a circle of diameter d compare .
‘'with the area of a square of side ¢? Try several
cases and see if you can get a generalization. Look @ .
<Y - v %
» ¢ e,
3
2 2
> 3 ;!
2 N e
H !
~ W
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at the formulae and see if the generalization makes
sense. -2 :

A, =md2/4 and  AS = d2
/4 < 1, therefore, A, is a little more
{I;i?;than 3/4 of Ag

2. What happens to the perimeter and area of a square, °
rectangle, circle if all basic dimensions are
doubled? Tripled? Do the same for volume formulae.

3. If we have a rectangular box of fixed volume made out
of sheet metal, what dimensions will make the area of
the sheet metal a minimum? ,

4. You have a can in the shape of a cylinder made of
sheet metal. If the volume is fixed, what radius and
height will make the amount of sheet metal a minimum?

3

These problems can be quickly explored with the use of a programmable
calculator. First, the student must know how to use the formulae required.

> Next he must tell the calculator how to use the formulae; that ds, what
sequence of steps it must take to arrive at a solution. Once-‘this is
achieved, the student experiments with different inputs to arrive at the
final conclusion.

- The programmable calculator should be introduced as soon as the child is
faced with problems which occur frequently or which require more than a
single step. This will happen not only in the computation but also in the
appiication of mathematics to real problems such as interest, installment
buying, cost comparisons, etc.

The use of the programmable calculator will not oniy make computation less
Liresome, it will also allow ‘the child to learn simple programming at an
“’early date. Computers and their programs affect everyone in many ways. In
the near future it will be as natural for one to understand how to use
programming as it is now to understand spoken and written language. In the
secondary schools: it will become essential to give many, if not most,
students some hands-on experience with microprocessors. The present
generation of professional men and women, business people, and skilled
workers has-a handicap because the computer, its uses, and its languages
were not a part of their early experience. Those who have had to learn
‘this later have not had the advantage of ‘an early introduction. Even more
gerious is the problem of those who must blindly use the results without
any understanding of how they came about or, in the case of management,
make decisions affecting computer operations with only a smattering of -
knowledge about what they do and how they do it. .This generation, those in
school now, must be given some background on this tool which they find
everywhere in their lives. ’ ,

-




1.

2.

3.

4.

5.

It is recommended that:

It is obvious that the calculator, especially the prégrammable calculator,

has much to offer mathematics students of any age.
c recommendations are made to promote and enccurage the use of the calculator
in the classroom.

Calculators be used in our shhools.

School districts adopt a policy with guidelines in
regard to the use of calculators.

Calculators be used as tools to reinforie the
basic skills, not as substitutes for teaching the
basics.

Calculators be used:

to facilitate the learning of basic arithmetic
skills at all levels,

to facilitate the use of comparison in problem
solving at all levels,

to facilitate the use of estimation in problem
solving at all levels, and

to facilitate problem solving in real life
situations at all levels,

Emphasis in calculator programs should be to teach
children critical thinking. .Calculators enhance
critical thinking by:

reinforcing the basic skills,

helping in the basic skills of reasoning,
reiuforcing the thinking process,

reinforcing problem-solving ébility;

promoting logical thinking,

encouraging creative usage,

providing stimulation and motivation,

helping to develop number sequencing concepts, and

aiding in discovering mathematical concepts.

The following
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All of this has important implications for teacher education. It is
essential that those who will teach future citizens be’prepared to
introduce them to the tools which they will use and which will affect their
lives in so mary ways. It is suggested that elementary school teachers be
vequired to learn how to use a calculator and be urged to learn how to use
a programmable one. Secondary school teachers should understand_how to
employ the programmable calculator as well as the microprocessor or
minicomputer.

The responsibility for this training will have to be assumed by the
universities. Although there will be specialists who can teach the
advanced material, most, if not all, teachers will have to have some
backgrourd-knowledge. At the moment it looks as though the universities
will have to be-sure that experience in the use of hand calculators,
programmable and otherwise, plus experience in the use of microprocessors
and main-frame computers is available to all who desire it. Further, it
will be the responsibility of the universities to encourage all students to
get at least minimal training with such equipment.

It is difficult to predict what the future will bring. The revolution in
miniaturization, along with decreasing costs, will undoubtedly produce new
wonders in the next few years. Whatever is made available in schools and
colleges should reflect what is available on the market and in general use.
The equipment purchased at the present should be minimal and consistent
with good usage so that schools can take advantage of new developments. In
° short, we are entering a new age. It is hoped that in education we will
enter ic¢ with enthusiasm and not be dragged into it reluctantly.

Thisodocument may be obtained from EDRS as ED 191 740.
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\ THE PROGRAMMABLE CALCULATOR IN THE CLASSROOM

=

- , Theodore J. Stolarz

Introduction

1 was an elementary school student in the late 1930's and attended the
Ernest Prussing Elementary School in Chicago's far northwest side. It was
% rather new school then. It had an excellent reputation for achievement
and, as I recall, it was provided with the best of everything that could be
provided during the great depression. We had one of the first "adjustment
teachers” in Chicago and I remember taking a lot of tests that ultimately
¢ resulted in my skipping a grade. But what I noticed about the adjustment

teacher (apart from the fact that she was an attractive young woman) was

° that she used a stopwatch and a slide rule. It was the first time in my
1life that I had seen such things. I remember that I had to build up my
courage to ask her about them and she demonstrated them to me. I had no
use for a stopwatch, but a ruler that could do arithmetic seemed like a - .
miracle. I had to have one.

.1 saved nickels and dimes for what seemed an eternity and finally bought a
wooden slide rule with "painted on" numbers and a little instruction book.
The slide stuck in the rule like glue on damp summer days and fell, out if
you tilted it during the dry days of winter. I remember how disappointed 1
was when I found out that it could not add or subtract. But I was the only
student in the 8th grade that had one and I carried it with me wherever I
went.

Later on, at Carl Schurz High School an algebra teacher caught me using my
slide rule on an examination. Her scolding mace me feel as if I were
"cheating.” When I later found time to explain to her°my reasons for using
the rule she stated that it was a "crutch" and that I was doomed to going
through the rest of my life carrying a slide rule. I had a nightmare where
someone stole my rule and I was unable to multiply 3 by 4. The truth is,
however, that she was partially correct. I have always had one with me
until I purchased my Texas Instruments SR-52 calculator. My expensive
Pickett slide rule’now si:s in my desk drawer at the college gathering
dust. ’

Many educators, with good reasons, fear the use of electronic calculators
by children in the elementary and secondary schools. I am sure that many
of you have heard their arguments. They are often difficult to answer.
Last year I was grading a problem one of my students handed in for a
statistics course I was teaching. About half way through the problem her
numbers started making no sense at all. I couldn't follow her logic. When
I asked her to explain the logic of her solution she stared at the paper
for a while and'then said, "I think my batteries were getting weak."” I

—
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confess to you that I did not know where to begin to help her. I was also
worried that a student might some day flunk out of college because a
transistor failed. )

°

The Microelectronics Revolution ¢

" In reality, the "microelectronics revolution” is with us and the world will
never be the same as it was before it started. It is by no means over.
Whereas, in the past a teenager had to be able to add and make change to
get a job we now find that in the "fast-food" hamburger shops the
youngsters press buttons with pictures of hamburgers, milkshakes, and fried
potatoes on them and the microprocessor in the register totals up the bill
and indicates the correct change for the bills you offer in payment.

Within a decade or less most college students and many high school students
will have computers of their own with higher level languages such as BASIC
or PASCAL and graphics capabilities. The calculator is now virtually taken
for granted by children and versions of Texas Instruments "Speak and Spell”
will be teaching vocabulary and spelling. The question is not, "Will we
make use of calculators in the schools?,” it is, "How will ‘'we do so?” 1In
1971 I purchased one of the first "hand held" calculators (the Monroe Model
10) for $350. A much better machine can be purcirased at Radlo Shack or
K-Mart for about $10. I have in my home a personal computer system (the
Heath H-8) which is more powerful than the "MANIAC" computer which was used
to verify the mathematical equations for the first hydrogen bomb which was
designed at Los Alamos, New Mexico, two decades ago. There is no turning
the world bac’k.

The Programmable Calculator

We are ccncerned here, however, not with calculators and their uses, but
with programmable calculators. It is very important that we draw a clear
distinction between these two because, despite their obvious similarities,
they are really very different machines. A calculator simply performs
operations that are familiai to the user and can be performed by the user
without the calculator. The programmable calculator introduces a new
‘mental process and 4 set of new concepts that must be learned. The

" programmable calculator is a computer disguised as a calculator. The
“stored program” concept and the use of sequential steps following an
“algorithm" to solve a problem is a computer process. This difference
provides us with tlue opportunity to develop in our studenis a method of
thinking that will prove to be of great value as they face the world of the
future.
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Let us examine this difference by reference to the diagram below.
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A calculator contains the features shown -inside the dashed lines in the .
diagram. All actual calculations are performed by the arithmetic unit
_which sends the results to a display (light emitting diodes or paper tape).
Input of numbers (data) is accomplished using the keyboard. Certain
keystrokes require the arithmetic unit to address preprogrammed subroutines
which extract square roots, calculate logarithms or trigonometric
functions, or in more complex machines convert degrees to radians, solve
rectangular to polar coordinates, etc.. The analogy to the central
processing unit, input/output functions, and subroutine branches is obvious
to anyone with a passing acquaintance with computer architecture. The
similarity is even greater when We recall the fact that all operations are
actually done in binary code using such standard computer techniques as
two's complement arithmetic and the rule of Boolean Algebra. All that need
be added to build a complete "digital computer” is to provide a progranm
memory which is sequenced by a "clock” which feeds the steps to the
arithmetic unit at a speed within the limits of its capacity and a data
memory which can store numerical data on a "destructive read-in,
non-destructive read-out" basis. All programmable calculators have these
features and they differ only in memory sizes, speed, provision of remote
recorded program entry, and the "richness" of the instruction set provided
to manipulate the varicus "blocks” shown in the diagram.

The key point is this. The logic or “mental process"” used to program the
programmable calculator is identical to that used to program any computer.
In the calculator, programming is done by defining a series of "keystrokes"”
that will solve a problem for the user. In computer languages such as
"agsembler languages” or so-called "higher level” languages such as ALGOL,
BASIC, APL, FORTRAN, COBOL, FOCAL, PASCAL, etc. we use a fixed set of
written instructions in a rigidly defined syntax to solve the problem. The
mental process used By the programmer is fundamentally the same. It
involves developing an "algorithm” which breaks down the solution of che
problem into a series of seqiiential steps which must be executed in an
exactly defined sequence. ‘There is no room for ambiguity in either case.

-
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Planning Algorithms

&

The key to developing programs that will solve problems using computers or
programmable calculators is skill in developing algorithms. The
programmable calculator is ideal for introducing this skill because the
user can concentrate on the problem of how to accomplish a goal without the
added confusion of learning the syntax of a computer language. This is not
immediately obvious. I had the unfortunate experience of doing a.l this
backwards. My first efforts at building algorithms were with the IBM 1401
computer which had a FORTRAN compiler.. I had little prior experience with
computers and no instruction in their use. I acquired the IBM technical
manuals and spent some weeks before I-could get any idea of how to get
numbers into the card reader and results out on the printer. During most
of this time I had to operate the computer myself and the sheer size of the
thing was unnerving. The few programmers around the computer did not know
FORTRAN and kept trying to correct my syntax, not my strategy. Most of my
errors were in program flow, nnt syntax. The compiler caught most of my
syntax errors. The computer was faithfully doing what I told it to do, not
what ‘I wanted it to do.

o

After about a year of this experience, 1 was writing many successful
programs, but my efforts tended to waste a good deal of computer time and
printer paper. At about this time we acquired an early programmable
calculator in the psychology department. It was made by the Monroe company
and we had to punch octal codes into blue cards to represent keystrokes,
which was somewhat confusing at first. But I found that solving problems
with this calculator gave me much greater skill in writing FORTRAN programs
for the large machine. No one prior to this took the time to teach me the
fundamental process of designing efficient algorithms. I was too worried
about losing control of the high-—speed- printer which could empty most of a
box of paper before the computer operator could stop it or in counting card
columns to construct input format statements.

Later on in.this conference when we see demonstrations of problem solutions
using programmable calculators we should keep in mind that the process we
are using includes a series of concepts that are necessary for the
efficient planning of algorithms. The programmable calculator can be used
to teach and/or illustrate these as we develop.this skill in our students.
The following is a list (not complete, of course) of the kind of concepts I
am referring to. :

1. The use of a "program.” The key concept which students may not
understand initially is that of using a "program” to solve a problem. The
programmable calculator has in common with the digital computer the fact
that using a supplied program allows the user to solve a problem which he
may not know how to givey .Once a program is written it can be used many
times. A program I wrote for test item analysis in 1971 is still widely
used at our university (and in many other places) to evaluate multiple
choice tests. It performs thousands of calculations using some rather
sophisticated algorithms. Most users are unaware of the statistical
niceties it contains. They do, however, understand the output it produces,
and that is all that matters. This is the "magic" of the computer;
programming languages are universal. Pre-written programs are available
for all programmable calculators and they are very useful.




2. Planning sequential steps for problem solutions. While some texts

start out with "flow charts" and diagraas which define an algorithm, the

"student should first learn a fact of life. A computer can only do one

thing ac a time. This is true of all computers, no matter how expensive or
sophisticated. We can, by clever programming, make a machine seem to do
several things at the same time. However, if we have one -central
processing, unit through which all data must flow, the computer has the
capacity of doing only one thing at a time, This is very evident when
using a programmable calculator where tie sequence of the keystrokes is
important and the task must be reduced to a finite number of steps done in
a certain order.

3. Planning the order of arithmetic operationms. ‘While I am sure that’
the teachers of mathematics present here today teach their students that an
algebraic expression or formula is merely a convenient "shorthand” for
specifying the order of arithmetic operations, some of my students act as
if they do not know this. Planning the series of keystrokgs needed to
solve an equation can reinforce the student's understanding of the
importance of this order. For example: a + (b/c) # (a + b)/c.

4. Memary storage and retrieval. Skill in manipulating memory is a
mark of the good programmer. The concept of depositing irtermediate
results into a memory “"bucket" for later use is not intuitively obvious.
Less obvious is the placement of a constant like pi or e into a "bucket”
for later use on a repeated basis. This Is easier to see on a programmable
calculator than on a computer using a language like BASIC where we might
say, "LET X2=2.712828." The beginner does not see that the computer will
reserve a fixed number of binary digits in memory to hold the value of the
variable designated as X2. Most programmable calculators allow the user to
add to a memory location or subtract a value from its contents directly.
This is excellent practice.

- 5. Planning.input/output operations. The output of a calculator is -~
typically a number (or a series of numbers) on a lighted display of on a
paper tape. The builder of the algorithm must plan when the program is to
display these numbers aad he must "document” his program so the user will
be able to identify what the numbers mean. He or she must also plan the
program so that it will pause so that data can be entered into the sequence
via the keyboard so that program flow can proceed. This is a skill that
has a positive transfer to the learning 'of computer programming in the
future.

v

6. Branching forward or backward. While program execution is
sequential the sequence does not always proceed in a single direction.
Some parts,of a progcam may be executed only one time while others may be
executed many times to accumulate sums, products, quotients, etc. This is
easily accomplished by "labels” in many calculators. Some calculators
allow the user to set "flags" which can be tested to bypass "GOTO"
{nstructions which branch programs- back over previous steps. Practice with
these techniques is very valuable. :
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7. Conditional branching. Most programmable calculators allow tests
of the value in the "accumulator” or display register to see if it is,
positive, negative, or zero before branching to a portion of the program
occurs. The test for "greater than, less than, or equal to" a certain
value is easily accomplished. Such branching is so frequently used in
computer algorithms that it is actually difficult to write a program of any
complexity that does not use this technique.

8. TForming repetitive "loops."” Using the above concepts it-is
possible to teach the construction of programs which "loop" through a
series of steps for either a fixed number of times or until a desired
result is accomplished. While this is planned for in programmables which
have a "decrement memory and branch when zero"” instruction, it can be done
with any programmable which provides for the "+-0" branch test. Learning
the concept of "looping” is difficult for many students who first attempt
it with "FOR-TO" loops in BASIC or "DO" loops in FORTRAN. It is one of the
most widely used techniques in the construction of computer algorithms.

JA good exercise to teach this concept is to have the student write a
program to obtain the square root of a number using the method of
successive approximations suggested by Newton. This is how many compuLero
calculate square roots.

9. Clearing storage. The fact that memory locations can hold
"garbage"” from previous program steps and must be "cleared” or set to zero
if they are to be added to or subtracted from will become painfully clear
after studernts write programs that "bomb out.” I violated this rule the
other day after over a decade of computer and calculator use and hundreds
of successful programs in use all over the country.

» 10. Overlaying memory. It is an excellent builder of mental
discipline to fit a large program into a_machine that is limited to a small
number of memory storage locatipns. Clearing and re-using memory locations
builds good programming skills. I find myself sometimes getting careless
in this regard when using my home computer which has 24,000 byces of memory

which will soon be expanded to 40, 000 bytes. Starting with a large machine

can develop bad habits.

11. Use of subroutinesssr~Most programmables allow for construction of
subroutines to perform repetitive chores with economy of program steps and
memory storage. 'This is a concept that takes some practice before it
becomes a matter of habit. )

12. Indirect memory addressing. Some programmables allow for - -
branching to a program step specified in a memory location. This value can
be the result of calculations within the program. This is an advanced
skill but it is within the capabilities of bright students. It provides a

- very powerful tool in the construction of some algorithms.
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13. Concern for program length and execution speed. There are, of
course, several ways to construct algorithms to solve any specific problem.
All of them are "correct” if they produce the desired results. The "best” '
algorithm is the one that provides the result using the fewest program
steps or keystrokes. Since the "clock” in a programmable calculator is
relatively slow as compared to a computer "clock" this speed difference is
more obvious when using the calculator. The shorter program is also easizer
to load since there is less chance for error.

The list is not complete. However, it does suggest how much a person can
learn from the use of a prograrmable calculator. The little machine that

fits into a pocket or purse is in fact an extremely complex marvel which
contains thousands of electronic components arranged so that they can be
instructed to solvé a myriad of problems. In at least this one area, that

of teaching the building of algorithms, its use in the classroom is very
valuable. The positive. transfer of these learnings to future learnings .
should be obvious. .

-

Other UsesT

While up to now my interests in computer algorithms, programming languages,
and digital electronics clearly have influenced my presentation of how
programmable calculators can be used effectively in teaching in elementary
and secondary schools, there are many other uses that can be found for them
that have educational value. It is a feature of this conference to explore
these potential uses through the exchange of ideas. The shared creativity
of many skilled educators can open up avenues and approaches that could not
be foreseen by a single person regardless how .reative he or she may be.
Again I must reach into my dtm experiences which merely suggest how
fruitful the field is. I will illustrate a few ideas that I have. In most
of these the teacher does the "programming” but there is no reason why a
student or a group of students could not be involved in this effort.

&mny

1. Curve plotting. In teaching the concept of the "normal curve” to
my introductory statistics students I try to convey the idea that the curve
has no"standard” shape but is a plot of an equation involving certain - -
constants and variables. The constants are pi and e and the variables are
‘the mean, the number of scores, the standard deviation, and the individual
scores in the distribution. By writing a program for the calculator which
solves for the height given the values of the variables previously

___- -mentioned, I can plot the curve several times to show what effect’the

variables have on the shape cf the curve. Solving
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for h given nf S, M, and X fifty or a hundred times is a prospect no man
can face with equanimity. A short program for my Texas Instruments SR-52
-gives the values of h in a few seconds and allows the curve plotting to go
on. 1In a secondary school class the "feel” for simple equations-employing
powers of 2 or 3 could be of value. It might also be useful to plot lines
Lty selected points in linear methods where a program. for a "least squares”
fit of a line to a set of poinps Is easily written.
~ H
> 2. . Building tables. I have written simple programs using the
formulas for compound interest to determine how much I must save, given
current bank interest to have enough money to purchase additional memory or
peripheral devices for my cgmputer at a certain point in time. I also
calculated depreciation scheédules for the SR-52 for my income tax form. I
can.see possible uses for this kind of programming in teaching business
mathematics or even consumer education to students who will be users to
credit in a few years. N

3. Science education. I received a "lunar lander game" program with
the SR-52 and I spent a few hours playing with it. Most of the time I
impacted the moon at various velocities and theoretically killed myself
several times. I can see, however, that the acceleration of a falling body
could be demonstrated, or the trajectory of an artillery shell estimated.
The ease of plotting data points gives a better feel for the dynamic nature
. of what is happening rather than the static feel one gets when it takes
considerable time to establish a single data point. I have also used the
metric conversion programs when my favorite scotch suddenly appeared in
Ralf-liter bottles and I wanted to calculate the price per fifth gallon.

4. Mathsmatics classes. The combination of the availability of
trigonometric functions and programming capability helped me verify the
correct operation of a "Biorythm Plotting Program” 1 placed on my home
computer and the’ computer system used by our university. The sine function
ig. used to generate the curves, of course,, but verifying the plotted points

) in the computer program helped "debug” the operation of the program and
ensure that the leap years were handled properly. I can see many possible
uses for this kind of programming in courses.in algebra, geometry, solid
geometry, trigonometry, etc. My lack of familiarity with the secondary
curriculum in these areas, of course, limits me indanticigqting uses.

I will leave the rest to you and I am eager to see how much I will learn
before tomorrow is over. Thank you for your kind attention a&nd I hope that:
.you will find this conference to be of value in our’ common goal of
improving the mathematics skills af our students.

o
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. with a computer center, do you have to drivethere to drop off a deck of cards and come back later for

involved in-long range weather forecasting a calculator woa't do (but neither will a 8600 home computer! )

I
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- THE. AL FOR
- PROGRAMMABLE CHLCULHTOR/

by JOHN J. WAVRIK

With all the attention being given to computers these days, another quite remarkable instrument
often gets hverlooked the programmable calculator. | don't wish to open a debate about whether or not
programmable calculators are computers. Let’s assume that they are not. A programmable calculator has o
many computer.like features, but it is basically limited in its input and output: jt accepts numbers and
outputs numbers. Most computers can process words as well as numbers. This can be very nice for games
(in one Star Trek version, if you accidentally destroy your own base, Mr. Spock will print you a message
telling you that what you have done "is not only illogical, it's stupid!*’) and for non-numerical mformatuon
processing tasks. Some computers can preduce graphics displays, some can be used to control other ma-
chines. Calculators will only calculate. At the present time, though, they are better at this thar: modestly
priced computers. 1f “number-crunching” is your game the instrument of choice is a calculator rather
than 2 modest computer. If factors of cost and portability are thrown in, we find that calculators form a

distinct breed of machme that has its-own right to exist.
4

!,

At the moment ! find myself heavily involved with numerical work. | do have access to a large
eomputer system but find myself doing much of the work with a programmable calculator. it may be a
personal quirk, but | find it easier to devise and test algoritms using the calculator. in some cases, though,
the results that really interest me requure more storage and speed than the calculator can provide. In such
cases the procedures | use are designed with the aid of the calculator but the computer does the fina! work. -
it is true that computers run more quickly than calculators. Be sure, however, to count the time from
posing the problem to obtaining the solution! In many cases the computer’s intclerance for misplaced par-
entheses and Smitted semi-colons-will maka the debugging process far more time-consuming. If you work

the resuits? How long does-it” take to enter a program and data into the machine? Of course, if you're

There is another area in which programmable calculators are useful: education. I am ‘working with
# mathematics club for elementary school students in gradez 4—6. in an effort to convey to students what -,
is involved in getting a computer to do what it does, ! demonstrated some simple programs with a program-
mable calcuator. To my surprise, several of the students showed readiness to learn programming. Wrmng
original programs is an excellent problem-solving task for elementary school students. A pair of fourth gra-
ders who dec:ded to write their own perpetual calendar program not only had :o do some research info
calendars and astronomy, but they also had to solve several technical mathematical and programming prob-
lems. The calculator is also useful in allowing the exploration of areas that would be less accessible other-
wise. A sixth grader, for example, used a random number subroutine to conduct experiments in proba-
bility and statistics. The use of the calculator also has provnded insight into computers. Students have a
better appreciation of what is involved in computer programmmg and of what computers can and cannot
do. Some have found it quite easy to learn a computer !anguageﬁ after their experience with the calculator, ~

Y

Learning doésn’t take place only at school. Indeed if a student has a great deal of interest in a spe- ,
cial subject (like mathematics) it is unrealistic'to éxpect any school torprovide the type of instruction such
8 student really needs. Mathematicaily talented students have-needs, interests and abilities that no mass
education system can cope with. Such students should expect to do a great deal of their leasning by pur-
suing their interests at home. To parents of these students | would seriously recommend the purchase of
] programmable calcutator. Ata cost of about $100 one can buy what amounts to a personal laboratory
for work in mathematics and computer science.

-

Dr. Wavrik is an Associate Professor of Mathematics at the University of California at San
Diego. He is the author of “Fi: .dmg the Klingon in Your Calculator”, CALCULATORS/COMPUTERS
Magazine, January 1978.

J
Reprinted by permission from Calculators/Computers 2: 63; April 1978.
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* A SUMMER COURSE WlTH THE Ti 57

PROGRAMMABLE CALCULATOR

By ELI MAOR
University of Wisconsin—Eau Claire
Eay Claire, Wl 54701

Let me wish that the calculating machine. in’ View
of its great importance.-may” become known in wider
circles than is now the case. Above all, every teacher
. of mathematics should become familiar with it. and u

. ought to be posslble to have it demonstraled’ln sec-

ondary instruction”
s —Felix Klein

‘freferring 1o the newly invenjed mechanical calculaior)

in an address to high schodl 1eachers, Goitingen. 1908.

In the few years since its appearance on

‘the mrarket, the programmable calculator

already has opened up an entire new di-
mension in numerical exploration. Hun-
dreds of problems from number theory. al-
gebra, and calculus. which until now have
required the use of computer facilities (and
hence the knowledge of a p"rogramming
language), can now be programmed and
run on one’s own pocket calculator at
home, on a trip. or while on vacation—pro-
viding many hours of reward and virtually
an endless variety of mathematical topics
to explore.

Thetefore, when I was asked by the
newly foundcd Eau Claire Association for
. High- Potential Children. Inc. to plan a spe-
cial mathematics course as part of its sum-

mer program for 1978. my instant choice’’

fell on the programmable calculator. The
proposal that subsequently .evolved called
for a six-week. three-times-per-week course
based on the Texas Instruments TI 57. The
chief philosophy behind the proposed proj-
ect was to offer an enrichment program for
students of the upper elementary and jun-
ior high school levels that would enhance
their interest and motivajion in mathe-
matics; consequently, the syllabus put

.

Repr:ht:ed by permission from Mathematics Teacher 73:

.

stress on ideas and concépts, rather than on

. techruques and rote learring. The conrse

was.to be one of fifteen courses—oﬁ'cre.d -by,
the association—for ns summer -program,
‘ranging in topics- from biology.and astron-
omy to.art. Latin. and Greek mythology.
~A grant enabled the association to, pur-
chasg seventeen calculators. which in turn

‘deterniined-the number of participants,iny

the program: the plan called for every stu-

- *dent to have iiis or her own instrument,

thus eliminating some of the frustrations
-that are common at computer terminals

- where many users have to share the same

facilities. Two sections of the course were
offered—one for ages 8-11 and the other
for ages 12-15. Theie were no entrance fre-
quirements. but the intention: was to offer
the course to particularly gifted and moti-
vated children; arid this indeed turned out
to be the case. -

The TI 57 prog\rammablc calculator was
chosen chiefly because of its simplicity of
operation. It has a modified algebraic logic

known as AOS (Algebraic Operating Sys* |

-tem). which not only enables algebraic ex-
pressions to be entered from left to right
exactly as written. but also “recognizes” the-
hierarchy among algebraic operations. If,
for example, we press the” keystroke se-
quence | + 2 X 3 =. most calculatoss will
display 9 as the result. becausg thcy per-
form the instructions sequentially as they
are entered. always completing the pre-
vious calculation whenever a new opera-
tion is encountered. The TI 57, on the other

hand, will display the correct result, 7, be-’

cause it “knows™ that multiplication must
precede addition. This featuré-was consid-
ered to be of major importance; because of

the age level of the participants it was very.

important to make the arithmetic as simple

February 1980.
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- - ‘ns’possil‘:lé and to avoid:any complications '
T due tégdiﬂ'erem “logics.” Also, the pro-

gramming features of the Ti 57 are just

, about right for the lével of the students in-

volved; the instructions are simple and
straightforward, eliminaticg the necessity
of learning any sophisticated programming

language. This meaht that we tould “zo"’

straight to business,” concentrating-on the
mathematics itself from the very beginning
of the course. s

Perhaps a brief descr.ption-of the pro-

. gramming capabilities of the T1 57 would

be in order. The instrurnent looks very
much like any other scientific calculator,
but a special keyedenoted LRN (*learn™)
transforms it into a “student” ready (o re-
ceive instructions from us. the “teachers”
(this attitude, that the children are really

the teachers of their own calculators. was

“maintained throughout the entire course).
The calculator is capable of receiving-up 1
fifty program instructions, which is more

than sufficient for most elementary.pur-.

poses. A “pause” key instructs the calcu-

lator to display any intermediate results’

during program execution, whereas the

. R/S (“run-stop) instruction halts the pro-

gram at any desired step. There are two de-
cision keys, x = ¢ and x = ¢, that compare
the current number x in the display-register
with a prestored number 7 in the test-regis-
ter and branch the program according to

the outcome of the comparison. Branching’

can also be affected through the GTO (“go
to”) and RST (“resef") instructions: the
former diverts the program tc a specified
location (“label™), whereas the latter sends
the program back to the beginning. There
are several editing keys that enable one to
make corrections or changes in the pro-
gram without keying in the entire program
again. The instriment has eight memories,

in.which numbers can be stored. added to. ’

subtracted from, multiplied by, or divided
by, as well a$ exchanged with the display
value. Thus, the calculator has full “mem-
ory arithmetic™ capabilities, a feature that
we constantly exploited in our_ programs.
The display itself has an eight-digit capac-
ity, but all calculations are internally done

o

&
<

with eleven digits that a‘rehthen rounded off
for displaying. Figure | shiows the key-
boarg of the instrument. .
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Fig. 1.- The T157 prograﬁ‘mablc calculator.
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Description,of the Course

The course met for six weeks, three times
each week, ‘in the seminar room of our
mathematics- department. There, sur-
rounded by books and periodicals. the pu-
pils were exposed to some of the flavor of
academic life at a university. They were
free to check out any books they wished.
and one of them asked to take home the
thirteen books of Euclid! Whether he ac-
tually studied them I do not know. but the
incident shows something about the curios-
ity of these students to learn and explore

new ideas in mathematics. a curiosity that

persisted throughout the entire course.
Each topic of the syllabus was used as an
“excuse” to introduce a new.concept, bring
in some novel idea. or point out some high-
lights from the history of mathematics
(table 1). In this way the students were ¢x-
posed to the spirit and flavor of mathe-
matics even without having the more so-

phisticated toolsO necded for.,a fuller grasp
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5 of these concepts. For example, the multi-  squares we key in the following program
plication table was used to discover various  (“2nd" means an upper-case instruction).

- ':hiddcn”*'mathemali'cal; patterns, such as LRN
arithmetit progressions (any row or column —
& ) . of the table), the progression of squares 1, 1 -
: ' 4,9, 16, 25, . .. along the main diagonal, or SUMO Y
e - the symmetry of the entire table with re- R(;i'o ) ’
’ . spect to this diagonal. The ‘students them- .
selves discovered thése features in response 2nd Pause : .
¥ to my questions, ‘and they were fascinated RST
to find out, that the boring multiplication . . LRN
. _table has so many interesting secrets in it. RST / -
: _ Next we learned how to “teach” the cal- R/S o
culaior to_generate some of these patterns. Again, it was the students who suggested

. For example, to generate the progression of  this program. When two different programs
- . - were proposed for the same task, we would

o, . ’ TABLE | : write both on the blackboard and discuss
3 e *  their relative merits or drawbacks; if both
., - Topics Covered in the Two Sections = ° programs worked properly, we would
: Section I (ages 8-113 adopt the one requiring fewer keystrokes. -

. L lfm “ﬂgfﬂ; how' to use your T1 57 program-  Ultimately. some of the youngsters became
able calcwator. = ° so addicted to programming that they

- “ 2. Teach your calculitor how to count (counting . .
: by ones, twos. tens counting backwards). would come up with suggestions for mak-
1 3. The multiplication "able on your calculator (all  ing even a very short program shorter yet!

3 . multiples of a giveu integer). We then moved to arithmetic and geo-
8 © 4. Sequences of numbers (all even numbers. all . . . . >
- - ¥ odd numbers. all squares). metric progressions aiad their sums. We
T 5. Number pasterns (sum of the first n integers.  mentioned some of the many cases where

sum of the first n odd integers). B . . . . .
6. Arithmetic, geometric. and Fibonacei proges- these progressions occur in daily life and

sions. nature—staircases, mile signs along a road,

7. The prime numbers. the countdown prior to a rocket launch, the

. Introduction to algebrac{letter numbers. asith-  petals of a flower, frequences of the musical
metic sentences expressed algebraically). - .

scale, and compound interest, to name but

¢ 9. 'Thfinity and limits (limit of (n + 1)/nas n— co.
g sum of ;he decreasing infinite geometric pro-  a very few. We then recounted some fa-
2 - gression). : _
10. Games on the calculator (nonprogrammed and n.xous ancc‘dotes related to tt_lcse progres
- “ programmed-games). — — - sions. The-students were fascinated-by the -
- 11. The numbér z. - famous story of how young Gauss found
o Section 2 (ages 12-15): the sum of the first 100 integers in response

I '_;,'-','.“’d"“"’m getting acquainted with your T1 1 hig teacher’s snecial assignment givento ™

2. A quick review of arithmetic. ’ him so that he would not be bored in class.

- . 3. What is programming? Even more fascinating was the story about_

;. fc:e::ﬁccu ncl::lio:; u:w to write large numbers.  the inventor of the game of chess: When

' . Introduction to 2.2¢bra. . summoned by the Shah of Persia and asked
s l:::‘ t‘-"ict:oxfsrgfi;.mmm (arithmetic, geometfic. 12t reward he would like for his inven- ;

. 7. The prime numbers. tion, he merely requested to have one grain

8. Other number patteras (Ulam's conjecture.  of wheat placed on the first square of thc

happy numbers, agorean triples). .
ppy Fyihag ples) checkerboard, two grains on the second

p . 9. Limits. \ !
. o 10. Newton's iterative method: finding the square  SQUArE, four grains on the third, and so on
¢ 77 “rovofanmumber. .. . until the entire-board would be covered.
- :1 .‘,'::":::g:’m‘”mw' - The Shah, stunned by the modesty of this
[ 13, Calculator games. request, immediately called for a sack of

grain to be brought in, but it soon became
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clear that not even the entire grair in the
kingdom sufficed to fulfill the task. (The
name “chess,” incidentally, is a distortion
of the word “shah.™) This beautiful legend
never fails to fascinate novices when they
learn how quickly the sum of the progres-
sionl +2+4+ 8+ - grows. We wrote a
program that displayed the partial sums of
this progression and stopped after the re-

TABLE 2

I—’Mo.Ml.Mz

L

m

No

Display M,

l.

Increment M, by |

!

Muliiply M, by 2
and keep product in M,

oy

Add M, o M,
. .and keepsum in M,

.,

Display M,
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qui.ed number of terms had been reached.
To make things simpler. we contented our-
selves with a 5 X 5 checkerboard, so as to
avoid entering into scientific notation, with
which the younger class was not familiar.
The program is presented here as a tiow-
chart (table 2) and in keystroke form (table
3). In the former. M., i =0, 1, 2 denotes the
content of memory Fi.

The children were absorbed in anticipa-
tion for the calculator to halt the program
after twenty-five steps and display the total
number of grains: 33 554 431. (The pro-
gram can, of course, be considerably “‘m-
plified if one dispenses with the halt in-
struction.) ’

. ‘ TABLE 3 nd
LRN

1 RCL2 2nd Lbl 2

STOO 2nd pause RCL 2
STO ! 1 R/S
2nd Lbl ! SUMO LRN
SUM2 2 RST
RCLO 2nd Prd | 25
2nd x=¢ RCL I x=t
GTO2 GTo! R/S

Another subject that generated great cu-
riosity was the prime numbers. Most of the
pupils had learned about the primes in
school, but they were surprised to hear that
some of the simplest questions about them
are unanswered to this day: What is the
next prime after a given one? (In other
words, is there a prime-producing for-
mula?) Why are there so many *“twin
primes” of the form (p. p + 2)? Are these
twins finite or infinite in number? No one
knows. We then programmed our calcu-

_lators to generate the primes in increasing
order (this program is not simple. so I gave
it to the class). We let three calculators run
this program continuously fof twenty-four
hovrs, and at the next session there was tre-
mendous excitement as the children
crowded around the three calculators in
anticipation for the next prime to appear in
the display. The highest prime we reached
was 12 479. The T1 57 is so constructed that
the action inside the machine dimly shows
up in the display even without the “pause”
instruction, and so we could watch the ma-
chine generating each integer and trying to
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divide it successively by all smaller in-
tegers. (One needs, of course, to test only
the odd integers; also, it is s:ifficient to test
the divisibility only up to and including the
square root of the integer, 2 fact that con-
siderably shortens the time of calculation.)
Finally, we let the same program run also
on the more advanced T1 58 coupled to the
PC-105A printer, which enabled us to print
- all the primes. We let that program run
uninterruptedly for about seventy-six
hours, and the paper tape gradually began
to fill the room. When we eventually
stopped the program, it reached a total
length of some fifteen meters, to the amuse-
ment of the children, reaching primes up to
30 000. We then carefully folded the tape
and put it into a box for permanent storage
so that no prime would ever be lost.
Another pioblem from number theory
that we explored was Ulam’s conjecture:
(a) take any positive integer; (b) if the in-
teger is even, divide by two; jf it is odd.
multiply by three and add one; (¢) do the
same with the new number, and so on; (d)
ultimately you will reach 1. For example,
beginning with 12, we get the following:

1263105168421

(Of course, from 1 we can go on to 4, 2, and
then 1 again; so we'll stop whenever we
reach 1 for the first time.) That this is so for
every positive integer was conjectured by
Stanislaw Ulam (born 1909), but so far has
neither been proved nor refuted by a coun-
terexample. The number of steps it takes to
refch 1 varies irregularly from one number
to another and is difficult-to predict; for ex-
ample. it takes only 12 steps to arrive at 1
from 106, but 100 steps to reach | from
107, teaching numbers well into the thou-
sands in the process. In programming this
procedure into the calculator, we have to
“seach” the machine how to distinguish be-
tween an even and an odd number. This is
done by dividing the number n by 2 and

taking the fractional part of the quotient’

(there is a special instruction, denoted Int,
that takes the integral part of a number; its
inverse, INV Int. ¥ill take the fractional
part). This fractional part is then tested

against zero and the program branched ac-
cording to the outcome {for details of this
program sée Maor 1979). There was a great
curiosity to test various numbers and find
out how many steps it will take to reach 1
in each case (the number of steps was
counted by the program and could be re-
trieved at the end). We even played a game
with this conjecture, by choosing a number
n and then letting everyone make a guess at
how many steps it will take to reach I; the
one making the closest guess was the win-
ner. The kids had special zatisfaction in
trying out very large numbers, such as
99 999 999 or 12 345 678 and watching the
up-and-down sequence of intermediate
numbers until the final 1 halted the pro-
gram. .

More than perhaps any other subject, the
notion of infinity, with its related limit con-
cept, enchanted the students and tumed on
their imaginations. It is here that the pro-
grammable calculator exhibits its full edu-

. cational capabilities. The limit concept is

~ne of the most abstract concepts in mathe-
wiatics: and many students, even at the col-

Jlege level, are deterred by it. This is per-

haps because one cannot visualize this
concept in one’s imagination and so it re-
mains a meaningless idea. With the pro-
grammable calculator one can at once sce
how a progression tends to a limit as more
and more terms are calculated. A simple
example is the progression 2/1, 3/2, 4/3,
5/4, ..., whose general term is (n + 1)/n.
(There was a problem with decimal frac-
tioris, with which some of the younger stu-

Jents were not yet familiar; so I gave a very
brief introduction to this topic.) The pro-
gram for displaying the members of this
progression is very simple:

LRN
1 +
SUM 0 RCL O
RCL O -
+ 2nd pause
1} RST
- LRN
RST
R/S

(This program can be shortened to nine




steps by writing (n + 1)y/n=1+1/nbutas
most.of the childran were not fluent in al-
gebraic techniques, I preferred the longer
program). It was an exciting experience for
the kids to watch the numbers in the dis-
play gradually app.»ach L the question
that loomed on everyone's mind was, Will
they ever reach 17 With the calculator. of
course, the answer is yes; when-the differ-
ence between the current value and the
limiting value becomes smaller than the
smallest number the calculator can handle.
the current number is rounded off to the
true Eimiting value. But the students had rio
difficulty in understanding that this is so only
because of thé technical limitations of the
calculator (as also of a computer); they all
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agreed that in theory the number 1 can
never actually be reached—only ap-
proached as closely as we wish. Thus, in
one stroke, they grasped the true nature of
this important concept. Other explorations
with the limit concept were performed,
such as the sum of the infinite decreasing

geometric progression 1/2 + 174 + 1/8°+

1/16 + -, which was first explained in
terms of cating one-half a cake, then an-
other quarter, then another cighth, and so
on ad infinitum. To the question whether
one will ultimately eat up the entire cake,
the class responded with a resounding no.
The last session of each week was de-
voted to playing games. We played many
games, some of them nonprogrammable,
such as Give-Take where the objective is to
reach 999 999 by taking turns in adding
and subtracting numbeis from the display
(see Schlossberg and Brockman 1976, pp.

‘to either pole! That gave the class some

20-21), others programmable. such as Hi-
Lo or On Target (see “Making Tracks into
Programming™). On other occasions we
solved simple crossword puzzies. using the
fact that certain numbers in the display.
when turned upside down, form various
letters and words, such as 14, which turns
into hi (see Oglesby 1977).

In the upper section, algebra rather than
arithmetic was stressed. At this age level
the students are mature encugh to use some
of the tools of algebra and do some more
advanced mathematics. First we discussed
the so-called “‘scientific notation” for repre-
senting very large or very small numbers.
using the EE key for this purpose. We de-
signed a model of the universe in which the
carth is represented by a cherrystone 3 mil-
limeters in diameter (our own sun will thea .
be a football-size sphere some 38 meters
away). The class was then asked to place in
this model the nearest star, 4.3 light-years
away. This task made them acquainted
with the notion of scale. After some strug-
gling with the huge numbers involved. we
finally came up with the answer: the near-
est star would be some 10 000 kilometers
away—about the distance from the equator

means to visualize the enormous distances
among the stars in our galaxy.

An interesting topic from number theory
is the Pythagorean triples. These are triples
of integers (a, b, ¢) such that & = a* + b°—
that is, (a. b, ¢) form a right triangle with ¢
the hypothenuse and all other sides having
integral lengths; (3,4, 5) is an example. The
Pythagoreans- were fascinated by such
numbers and attached mystical significance
to some of them. The search for all such
triples continued for many years until a
procedure was found to find them: take any
two integers (u, v) such that u > v; then the
numbers (a, b, ¢) given by

B

a=w =V b=2uv,c=t +V

form a Pythagorean triple, as can easily be
checked. (For a proof that this gives all
possible Pythagorean triples, see Courant
and Robbins, pp. 40-42.) It is easy to write
a program that;will display the members of

132

126




the triple for any choice of (u, v). and the
class was given this task as an assignment. I
then asked them to modify this program so
that even if by negligence we interchange u
with v (i.c., # < v), the program will still
work properly (this makes use of the ex-
change key). The students enjoyed discov-
ering more and more of these triples. They
soon realized that not all pairs (u, v) give
essentially new triples: for example, u = 2,
v = | gives the triple (3, 4, 5), whereas u =
3, v = 1 gives the triple (8, 6. 10). which is
not essentially different from (3, 4, S)—the
two triples represent similar triangles. In
order to get only essentially different trip-
les, (u, v) must not both be odd and must
pot have a common factor.

* The final two sessions were devoted to
the number =. This number always carries
with it a certain mystique to those who
learn about it for the first-time: why should

as common and perfect a figure as the *

circle be related to such a strange number?

_We first discussed the fact that = can only

be defined as a limit, which in turn means
that we can only approximate it. never ac-
wally find its “true” value. We followed
Arcllimedes’ method of approximating the
value of = by a sequence of regular in-
scribed and circumscribed polygons of
more and more sides. This method requires
a little elementary trigonometry, so we first
defined the t.igonometric functions sine
and tangent. (These were very easily un-
derstood by all students: it must be said, in
this connection. that the recent tendency of
many textbooks to glorify trigonometry by
defining frst the circular functions, then

__the trigonometric_functions, and viewing

them as separate entities. has done a lot to
complicate a subject that really is very
simple in ndture.) We then programmed
the method into our calculators for poly-

gons whose number of sides increases ina .

geometric progression beginning with n = 3
and doubling it again and again. The kids
were fascinated to see the numbers in the
display gradually approach the “true
value of 7. .
We then examined some of the .other
methods avi ilable to calculate the value of

«, some of which mark milestones in the
history of mathematics, such as the Greg-
ory-Leibniz series

« 1 t 1 1

21 3%Ys— 3t

(see Courant 1947, pp. 318-19, 352, 440,
443) or Euler’s series

s 1 1 1 1

sTpETEtEtEt
(see Beckmann 1971, pp. 148-49; Maor
1976). The first series converges extremzely
slowly and is of no practical value in com-
puting « (it is chiefly of historic interest,
being one of the first applications of the
newly invented integral calculus), but it
takes a programmable calculator to ac-
wally measure the rate of convergence; it
turns out that 628 terms are needed to find
a to two decimal places (i.c., 3.14). The sur-
prising fact is that the second series, which
one would expect to converge much faster
than the first (due both to the fact that the
denominators increase as the squares of the
natural numbers and the fact that all terms
are positive). actually converges almost as
slowly as the first, requiring 600 terms to
get 3.14. On the other hand, the series

~ 1. 1 1 1

o-TrrtytEt
and several others that can be obtained
from the Fourier expansion of various peri-
odic functions (see Courant. 1947, p. 446)
converge extremely quickly; writing pro-
grams for most of these series is very simple
and straightforward.
_ We ended the course by having a little
party. during which a pic was brought with
the inscription *“#r = 3.14” on top, and
everyone had a piece of it. Needless to say,
the children enjoyed this pic, and there
were many cheers and a lot of laughter.

The overall reactions to this first experi-

ment were enthusiastic; participants ex-
pressed favorable reactions on evaluation
forms, and many parents bought program-
mables for their children. Since then, five
more courses have been offered, one of
them a follow-up for students who had
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taken the first courses and who wished to
do some advanced work with the in-
strument. Plans are also under way to form
a calculator club where the students would
meet once or twice a week. exchange ideas
and programs, and test themselves on their
own instruments.

Conclusions

Although the teaching of mathematics to
young children by using the programmable
calculator is an entirely new experience. it
can already be said that it carries with it
many promising potentialities: it enables
the teaching of programming concepts
without learning a" detailed programming .
language, allows every student to use his or
her own instrument (and take it home after
class), and climinates the usual commotion
that can be seen at computer terminals.
Last but not least, this course demonstrated
again that even young children can learn
and understand concepts from higher
mathematics, provided that these concepts
are presented to them art a level appropriate

. to their age. With its incredibly low price

($40-$50 currently), there is little doubt
that the programmable calculator will have
a marked influence on classroom instruc-
tion in the near future. and we may well see
it change the entire pattern of mathematics
education.
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Since 1965. computer buffs, my-
self included, have been promising a

revolution in education because
computers are going to school. But
where is this revolution? Certainly
there has been at least a modest
learning revolution; this is apparent
from the many people who are
learning about computers and using
them to learn other things. In spite of
the fact that some worthwhile appli-
cations are being done with com-
puters in a few exemplary schools,
this learning revolution has yet to take;
place in most schools. There has
been an evolution in school iearning
{at least in many schools) that can be
‘attributed, in part, to computer tech-
nology, but no real revolution.

Before considering the potential
revolutionary effects of personal
computers upon education, it is help-
ful to differentiate between school
learning and out-of-school learning.
.The two are not always the same. We
tend to learn things away from school
when we want or need to learn them
and we do So in our own way and at
our own Speed. This kind of learning
has advantages and disadvantages.
One advantage comes from higher
motivation which encourages more
inspired and efficient learning. On the
other hand, the tendency to avoid dif-
ficult or uninterssting tasks may

Fred Bell, Professor of Mathematics Educa-
tion, University of Pittsburgn, Dwision of
Yeacher Development, 4A0Y Forbes Quad-
tangle, Pittsburgh, PA 15260,

Reprinted by permission from

result in not learning some very useful
and important things. Consequently
schools are useful in coercing stu:
dents, hopefully in a friendly and
interesting way, into learning scme
things that are good for them which
may not be learned otherwise. Out-of-
school iearning can be both good and
bad, but So can in-school learning,
which gets us to personal-computers
and the education revolution.

ersonal Computers and Dollars

One of the big reasons why
personal computers may catalyze a
revolution in our schools is that they
are relatively cheap and should get
even cheaper. Any family that can
afford two color TV sets can now
afford one color TV and a personal
computer. Of course, any high school
that could scrape up $10,000 per year
tor each of 10 years from a $1,000,000
per year budget could have had nearly
all of its students using a minicom-
puter since 1969. {See James Saun-
der, -Mathematics- Teacher, May,
1978, pp. 443-447.) Fortunately, a
family's decision-making processes
in buying a personal computer are
less cumbersome than a school's:
Unfortunately for school students, as
David Lichtman found (Creative Com-
puting,. January, 1979, page 48),

educators are less enthusiastic about. .

the computer’s role in society and its
potential for improving education
than the general public.

But now, with low-cost personal

Creative Computing 5: 68-70;
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' Classroom
1 Computers:
' Beyondthe 3R's

Fred Bell ‘

The classrootn computer should,
and can, go far beyond rote com-
puter-aided instruction by teach-
ing the student to analyze, evalu-
ate and develop complex sKills.
Perhaps, as a result, the long-.
awaited "revolution in education”

‘will be here sooner than predicted.

computers, good computer applica-
tions may increase in schools. Home-
computing enthusiasts have already
begun fo .take learning out of the
schools and are putting some of it
back into the home where it belongs.
Conversely, as mére and more per-
sonal computers come to school,
teachers can bring some of this good
“street learning” back into the
schools for the benefit of ali students.
Only $500 remaining in an equipment-
and-supplies account at the end of
the fiscal year can buy the first of
many personal computers for student
and teacheruse. ’ .
History shows that many tech-
nological innovations that could be
quite useful in promoting learning in
schools do not get much use in
schools until after they are common
in homes and on the &treets; for
example, TV sets, audio recorders
and hand-held calculators. Now that
personal computers are ‘“on the
streets,” we are beginning to see
them filtering into schools. But will
they be able to revolutionize educa-
tion in schools? TV sets, audio
recorders, calculators, and even mini-
computers, while affecting what goes
on in schools, failed to revolutionize
education. Can we expect the per-
sonal computer to become a revolu-
tionary agent? Yes, Ithink we can.

Parsonal Computers and Motivation

One of the most serious problems
in schools is that of motivating stu-
* i

September 1979.
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dents; that is, making them want to
{earn what teachers try to teach. The
motivation problem occurs because
sometimes teachers want to teach
things (for good reasons) to students
who do not particularly care to learn at
the time. Perhaps the best hope for
motivating students to learn in school
is to pay attention to the nature of out-
of-school learning. It appears that
peoplelearn non-survival things away
from school for several reasons: (1)
People learn to make things work
(suchascarsand com puters) because
they like to have control over impres-
sive machines. (2) People learn to
build model airpldnes, radios, book-
cases, etc. because they find satis-
faction in creating something from
nothing, or next to nothing. (3) People
teach classes, give speeches, and
write articles because they like to
share their opinions and knowledge
with others and possibly influence
other people's opinions. Many things
are learned because peopie enjoy the
recognition and approval of otner
people. (5) Otheractivities that are not

necessary for survival are carried out

for relaxation, enjoyment, and self
satisfaction.

But why do so many students dis-
like learning in school? First, stu-
dents seldom have control over the
academic machinery of schools; that
is,-.the classroom learning environ-
ment. Second, creating and building
tangible things occurs all to seidom
in most classes. Third, students’
opirions tend to be overshadowed by
teachers’' opinions in many class-
rooms. Fourth, many students get
low grades in school, which interferes
with their quest for recognition and
approval. Fifth, much of what stu-
dents have to do in school is neither
relaxing, enjoyable, nor self-satis-
fying. .
But how can a few personal com-
puters in a classroo’.s solve these
motlivational problems for students
and teachers? Well, computers and
computer-enhanced learning are not
educational panaceas, but they can
give students some real control over
what they learn and how they learn it.
Making a computer (an electronic
monster) do one's bidding is fun for
many peopie, in spite of the fact that
itis, attimes, tedio Js and frustrating.
Writing a computer program and
making it do whatit1s supposed to do
is creating something - both a
physical and an intellectual creation.

-

of

Most people (including teachers and
students) are impressed by good

interactive computer games, simula-

tions and tutorials, which provide
recognition and influence for their
creators. Finally, messing around, in
a meaningful way of course, with a
personal computer can be relaxing
and enjoyable, in spite of many
minor, temporary frustrations and
aggravations.

Therefore, we finu that personal
computers inthchands of students in
school can remove some of the artifi-
cial constraints of typical classtoom
environments and replace them with
some of the personal freedoms
inherent in many non-school learn’ i1g
situations.

Personal Computers and Learning

What is learned in school? Eng-
lish, reading, writing, arithmetic,
French history, etc.? Yes, these are
some of the subjects that are taught
but students should learn many other
things that subsume all subjects.
That is, students need to study each
subject in a mannetithat permits them
to function at all of the following
cognitive levels:

knowledge
understanding
application

analysis

synthesis

evaluation

problem solving
knowing how tolearn
creating knowledge

Schools are fairly good at impart-
ing knowledge (i.e., “George wash-
ington was the tirst U.S. president”)
and understanding (i.e., "2 + 3 = 5
because 2 marbles together with 3
marbles is 5 marbles"). However,
schools are only moderately suc-
cessful at teaching applications (out-

of-school uses for each subject),

s

analysis (breaking a skill or concep-,

tual structure into its parts), synthe-
sis (building complex skills or con-.
ceptual structures from simpler
things), and evaluation (comparing
skills and structures and making
judgments about them). Schoois and
teachers have even less success at
teaching students the skills and
heuristic procedures of problem solv-
ing, how to learn independently of
teachers and courses, and ways of
conducting the research and explora-
tions that gointo creating knowiedge.

During the past 15 years we have
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demonstrateg, through many drama-
tic examples, that computers can be
used in schoois to help teach know-
ledge, understanding, and applica-
tions of various subjects—things that
were being done fairly well without
computers. This 1s the evolutionary
aspect of computers in education.
But what about tne higher-ievel
cognitive activities, those things that

‘we haven’t been .able to teach very

successfully in school? Herein hes
the true power of computers (espe-
cially personal computers) to really
revolutionize learning and teachingin
schools.

.Writing a computer program re-
quires analysis and synthesis of the
subject under consideration as well
as the program itself. A student
cannot write a program to tutor
others, play a game, simulate a situa-
tion, or solve an exercise without
analyzing the tcoic being studied and
synthesizing it into a coherent teach-
ing/learning program. The synthesis
required in writing the program
properly and the analysis in debug-
ging it provides additional practice at
synthesizing and analyzing. Since
many non-tutorial computer pro-
grams are higher-lever applications of
topics, the student programmer must
evaluate the approriateness of aiter-
native approaches to the topicand the
program. When a student writes
computer programs to extend and
clarify topics in school, the six steps
in problem-solving (posing the prob-
lem, precisely defining the’ problem,
gathermg information, developing a
solution strategy, finding the solu-
tion and checking the solution) must
be carried out. On the other hand,
most so-called “problems” in text-
books are really exercises for-practic-
ing skills, which require only one of
the six steps of problem solving;
namely, finding the answer. After
several years of working with peopie
in Project S8lo at the University of
Pittsburgh, we found that many stu-
dents and teachers could Ctarry out
indepernident research of their own
choosing in computer-enhanced
learning environments. That is, these
people were creating knowiedge and
learning how to learn independent of
people who were iabeled as the
teachers and rooms that were called
classrooms.

Now personal computers can
bring the Solo concept of high-level,
self-motivated learning out of the
research-and-development laboratory




and put it in the hands of large
| numbers of students and teachers in
school classrooms.

. Carrying Out the Revolution

Even before the advent of personal
computers (as early as 1972), the
computer technology and cot:rseware
existed for a revolution in teaching
and learning in schools. Now per-
sonal computers with their low costs,

. - easyaccessibility, total dedication to
the user, and person-gn-the-street
popularity nfay provide the long-
awaited catalyst that is needed to
make some dramatic changes in how
computers are used in schools. In a
few years large numbers of students
entering high school will be as
familiar with a computer as they are
now witn a TV set, probably more so
since they will have actively pro-
grammed a computer, in comparison
to watching television gassively.

As a consequence of the popu-
larity of television, Americans are
accused of having become'spectators
rather - than participants. in life.
Personal computing certainly re-
quires active intellectual participation
on the part of the user. | have yet to

"
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hear ot anybne dozing off while
sitting in front of a personal com-
puter.
For several
- teachers worried about whether kids
shouid be allowed to use hand-held
calculators in school. The popularity
of calculators outside schcol quickly
settled that issue. Nearly every family
had a calculator. Pre-school chiidren
played with them and students
brought them to school. Teachers
could not ignore calculators because
it was impossible to keep them out of
school; so now they are trying to
deteimine how best to incorporate

. Calculators and calculator-related

skills into the schoo! mathematics
curriculum. Even if people try to keep
personal computers out of schools,

they are going to fail. In a few years, .

wheri they are more efficiently pack-
aged and even less expensive, per-
sonal computers can fill the “lunch-
box-technology” void created by
school-lunch programs. Instead of a
lunchbox, students-will be carrying a
PET or TRS-80 computer on a handle
to school. When this time comes, an
Apple for the teacher will really help a
kid gat a better grade in school. O

years mathematics -

Referances

Barstow, Daniel. "Computers and Educa-
tion: Some Questions of Values,” Crestive
Computing 5: 116-119; February 1979.

Bell, Frederick H "wWhy Is Computer-Re-
lated Learning So Successful”, Educational
Technology 14:15-18; December 1974,

Bell, Frederick H. “Can Computers Really
improve School Mathematics?”, The Mathe
matics Teacher 71:428-33; May 1978.

Dwyer, Thomas A. “Soloworks: Computers
Based Laboratories for High School Mathe-
matics,” School Science end Mathematics
75:93; January1975.

Lichtman, Dawid. "Survey of Educator’s
Attitudes Toward Computers,” Creative Com-
puting 5:48; January 1979.

Molnar. Andrew R. “The Next Great Crisisin
Amencan Education: Computer Literacy,” THE
Journal 5:35-38: July/August1978.

A

—r
RNy
e

T e Y

o

NTTRTAD SRR T

sy

——

o s d




E ' GETTING STARTED IN-A JUNIOR
HIGH SCHOOL: A CASE STUDY

By BILL ROBBINS
Ramsey Junior High School
Minneapolis, MN’55413

and ROSS TAYLOR
Minneapolis Public Schools
Minneapolis, MN 55413

Ramsey Junior High School‘has been
making instructional-use of computers for
overa dozen years. Although our efforts at
gcttm_g started seem like ancient history to
us, we believe that our experience over the

"1 years, _may benefit those of you who are get-
‘  ting started today.

Ramsey has approximately seven hun-
dred culturally diverse seventh- and eighth-
grade students. About 41 percent of the
students are from minority ‘groups—mostly

" black. The family income levels range from
very Jow to very high. For example, 32 per-
cent of the students qualify for free lunch,
and Ramsey receives Title I funding to
provide instruction in reading and mathe-
matics. In 1978 the student population, fac-
ulty, and school program moved from Bry-
ant Junior High School‘to the ~Ram°cy
Junior High bulldmg as a result of declin-
ing enroliment and the city desegregauon
plan.

computer teletype terminal was installed at
Bryant Junior High. It was donated to the
school by the nearby Bloomington-Lake
First National Bank. Bryant was the first

terminal, and within a year all other junior
high schools in the “city were similarly
equipped. Initially, the schools were fur-
nished free computer time on a Honeywell
time-sharing computer. In addition, time
was purchased from Honeywell and other
sources. .

Today, Ramsey has two computer termi-

Public Schools’ Hewlett-Packard 2000

—ar
P

During the 1968-69 school year, the first - -_

Minneapolis-junior-high-school-to-have--a-

nals that are used to access the Minneapolis -

Reprinted by permission from Mathematics Teacher 74

time-sharing system and the Minnesota Ed-

ucational Computiiig Consortium (MECC)
- Control, Data time-sharing system. These

terminals are housed in a small computer

room adjacent to the media center. The ter-

minals are mounted on wheels. and there

are telephone jacky in every mathematics

classroom so that the terminals can be
“moved and used where needed. In addi-
tion, Ramsey "had two Apple II micro-
computers, one of which is located in Bill
Robbins’s classroom and the other of
which is used primarily by the music de-
partmem

Computer users in Mumeapohs receive
external support from a computer resource
teacher and computer teacher aide in the
Minneapolis Public Schools as well as from
a regional coordinator of the Minnesota
Educational Computing Consortium. In-
service opportunities are provided by the
school system, MECC, and the University
of Minnesota.

In recent years, the authors’served as di-
rector and assistant director of the COM-
PUTE project, which produced programs
that allow teachers to have the computer
generate tests and worksheets keyed to 500
different computation objectives. They also
provided leadership for a similar project
entitled Computer Generated Mathematics
Materials, involving 1000 mathematics ob-
jectives in areas other thin cbmputation.

o PersonalExperiencesand _ _

Observations of a Junior
High School Teacher

I am dividing the subject of computer
use in the junior high school classroom into
five areas: (1) utility, (2) demonstration, (3)
drill and practice, (4) learning games and
simulations, and (5) programming. These
areas are not mutually exclusive. I will use
the term computer to apply either to a mi-
crocomputer or to a time-sharing terminal.

605-608;
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Utility Lo
There are many applications that can
.make life a lot simpler for a junicr high
school teacher, ranging from the very large
library programs to the five-line program
that you write on the spot. I use programs
like Compute to make up worksheets.
Other programs help mé to change number
bases,"do modular arithmetic, of do opera-
tions on fractions. At thé®end of each mark-

ing period, I write a short program to aver-

age my grades for that period. I could do
this oa a calculator; but the computer auto-
matically does the adding, dividing, round-
ing, and incrementing for extra credit. It
even assigns letter grades. It also gives me a,
printout that I can use to check for errors.
Téachers who use computers find that ideas
come ;'apxdly for a_variety of applications
where computers can make their work eas-
ier and less tedious.

Demonstration

~ Where the computer has a vidgo monitor
(TV screen) fot output, it can be used for
classroom demonstration. I usually connect
two or three monitors to my Apple so the
entire class can have a clear view. I have
- learned that-pie charts, decimal-fraction
equivalents, graphs, or just about.anything
that can: be drawn on a chalkboard or over-
head projector, can be quickly displayed on
‘the screen—usually in,a more dramatic, in-
tercsung, and dynamic manner. There are
volimes of library programs available.
(Most of the library programs that we use
are available on Apple II diskettes. Persons
wishing to purchase these programs should
write to the Minnesota Educational Com-

- -puting-Consortium, 2520-Broadway._Drive,__

- 8t. Paul, MN 55113, for information.) In
addition, I like to write programs that are
specifically suited to my style of presenta-
“tion. This sometimes takes a lot of time; but
once the program is written, it can be used
repeatedly.

Drill and practice

A computer is ideally suited for drill and
practice for Title I or other remedial in-
struction, Drill and practice can also be

~

142134

"

provided in a regular classroom setting. In
a small class (fifteen students or fewer),
with a computer in the room, each student
can spend part of most periods at the com-
puter, practicing needed skills. In ‘larger
classes or when the computers are housed
in a remotelocation such as the media cen-
ter, students who will receive drill and
practice on the computer have to be se-
lected according to their needs.

Learning games and simulations

Computer learning games and simula-
tions have high motivational value. For
some students this can be the beginning
and the end:of computer experience. Every

.day I hear a student say, “I want to play

the computer.” This may-be disturbing to
anyone who is concerned with computer
literacy. However, I have observed that the
computer can be used as a motivational
tool in any subject area. Many of the sithu-
lations that are available on micro-

computers or time-sharing systems have

educationa) value in mathematics, socic

- studies, language arts, sciencé, and other

areas. (An example of simulations is “Lem-

‘onade” in which students simulate running

a lemonade stand. A number of simula
tions are available from the Minnesota Ed-

“ucational Computing Consortium.) More-

over, for somie s‘fudems, playing games on
the computer leads to serious programming
later on. :

Programming

The main obstacle to teaching computer
programming in the classroom is usually

» the lack of availability of computers. One
_would like to teach a three-week or five-

week or x-week unit in programming, like
any other unit. Unfortunately, to accom-
plish this eﬁ‘ecuvcly in a class of thirty stu-
dents would require the availability of at
least ten computers.

The Minneapolis Public Schools are in
the process of purchasing sets of micro-
computers that will be loaned to schools for
specified periods of time. In the meantime,
I have found that I could get by with a lim-
ited number of computérs by teaching pro-




gramming concurrently with other topics. I
introduce an aspect of programmisg, as-
sign a project, and continue to teach the
other mathematics topics as usual. Each
day individual students go to the computer
and type'in their assigned programs while
the others are doing their regular lessons. If
a student makes an error, it will become
obvious from the computer output. This is
much better reinforcement than if I were to
correct the program and point out the error
before the swdent goes 10 the computer.
When all the students have had an oppor-

" tunity to complete the assignment, I inter-

rupt the regular lesson for a day and in-

troduce a new aspect of programming and -

assign a related project. This is a satisfac-

tory solution to a high student/computer .

ratio. I do not like a batch method. because
I feel that interaction between thc student
and the computer is anﬂabsolute impera-
tive.

Some of the concepts I teach are care of
floppy disks, loading and running pro-

grams, pnnt statements, lnput. go to, if- -

then and read-data statements, for-next
loops, and microcomputer graphics. I start
with simple assignments in which students
begin by writing programs that merely
print their names and progress to assign-
ments that involve problems, generation of
tables, or creation of pictures using graph-
ics capabﬂny

My experience has been that after five or
six computer lessons the novelty wears off,
and some of the students become less than
excited about computer programming. This
reaction can be expected. However, each
year there are several students who are en-
thusiastic. These students will generally
continue on their own, with my help, by

that is in the library. These students will be
waiting: by the.door when I arrive in the
morning, and they leave reluctantly when I
lock up in the evening. Some of them have
written amazingly sophisticated programs.

In following up on these students, I havc‘

fouad that they do serious progralfumng in
senior high school and they tend to save up
to buy their own microcomputers.

@

_-writing a.simple game or.madifying a game__ ..

Tips for Getting Started

On the basis of our experience, we would
like to offer the following suggestions for
persons who are starting or expanding their’
use of computers in their schools.

Work cooperatively with others external to
the school.

-«There is a distinct advantage to purchas-
ing hardware that is similar to that being
used by others in the area. Then experi-
ences can be shared, software and pro-
grams can be exchdnged, and cooperative
in-service efforts can.be arranged.

NCTM and its affiliated groups are in-
cluding an increasing, number of computer
workshops in their programs. The Associa-
tion for Educational Data Systems (AEDS)
and its affiliated groups are another source
of> professional information (Association
for ‘Educational Data Systems. 1201 Six-"
teenth Street, N.-W., Washington, DC
20036) Nearby colleges and universities
can help by-arranging in-service courses for
credit. There is great benefit in state or re-
gional computer consoftias” .

Build support within the school. ’

Most schébls operate according tq the
golden rule: **Whoever hath the gold shall
rple.” Therefore, the support of the princi-

pal is crucial. One of the best ways to get -

this support is to show that there is a high _
degree of interest apd support on the part
of students and parents. Demonstrations -
and open house activities where students
can show what they can do on the.com-
puter can build support of students, par-
ents, administrators, and other faculty. Ex-
clusive use of the computer by the

mathematics department or by a single .. ..

teacher within the department can narrow
the support base. On the other hand. when
teachers realize that the computer has ap-
plications in' every discipline, the whole
faculty can become a base of support for
purchasing computers.

Be creative in seeking funds.
A local bank donated our first terminal

N
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to us over twglve years ago. (Incidentally, it
is still running.) Since computers are highly
visible, they are particularly suxt%%

nations from businesses, PTAs, and other
groups. It is a good idea to mount on each
piece of donated equipment a brass plate
with the name of the donor and the date of
the donation. Various find-raising drives
can finance computer equipment. For ex-
ample, at Ramsey we are using the pro-
ceeds from student fund-raising drives to
purchase microcomputers. In recent years,
federal Title IV-B funds, which are avail-
able to all public schools, are being used in-
-creasingly in many schools to purchase
computer hardware and software. Title I
funds are also sometimes used, but in this
case the resources must be used for reme-

dial instruction. Of course. there is always .

the regular school equipment budget.
“These budgets have besn used in the past
to supply the schools with overhead projec-
tors, motion picture projectors, video
equipment, and the like. By now, many
schools are saturated with such equipment,
50 in coming years the funds might be bet-
ter uscd to purchase computers.

Look ahead. .

Computcrs are becommg mcreasmgly
useful in all sybject areas as well as in guid-
ance, mcdfa service, and administration.
Make pg_us for increasing use of computers
by students at all grade levels and ability
levels. In the computer field. svith rapidly
accelerating change, flexibility is the key.
Where possible, purchase hardware that
supports a large variety of software that
can be upgraded and that can run with var-
ious input and output devices. Most impor- ,

@

tant, when you look ahead; be sure to pro-
vide your stédents with the computer °

literdcy experiences that will prepare them
for the world in which they will live as
adults. For many years now in Minneapolis
we have included questions on elementary
BASIC computer programming on our
eighth-grade criterion-referenced test. and
we include computer literacy questions on

- our senior high school Basic Mathematical

Knowledge Test. As you look ahead, plan

eas do-°

9
for all junior high students to have hands-
on experience and to write and run at least
a few simple programs in BASIC. ¢

Don’t,  put oﬁ' getting started.

This is a time of accelerating change in
both software and’ hardware development.
In such a time it can be tempting to wait
for anticipated improvements and possibly

lower prices before getting started. How- -

ever, in times like these, such a strategy
could cause you to wait indsfinitely. Even
sthough there are new developments around
the corner, the hardware you purchase
today should be useful for its entire phys-
ical life: An important reason for starting
now is to gain experience and knowledge.
Persons who delay get left further and fur-
ther behind. There are more and more
ways that instruction can be supported by
use of computers, and you should make it a
point to learn about them. Finally, you
should get started so that you can help your
students develop the computer literacy they
will need to live in a computerized world.

2
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GETTING STARTED IN A HIGH SCHOOL:

A CASE STUDY

By HERB GESSHEL-GREEN
" Parkway Program
Philadelphia, PA 19103

Many teachers today are asking hov
they can get started teaching students
about the computer, how they can motivate

o - . . . .
the students, and what kinds of activities

they can'try. In this article, I will relate my
. personal-expériences in these areas.

I was a mathematics teacher in a junior .

high school before volunteering to teach
computing. Along with another mathe-
matics teacher and a science teacher, I
joincs the workshops for téaching ccm-

- puter litéracy that were offered by Sylvia | .

Charp, director of instructional systems of
the public schools. Every secondary school
was.-eligible to receive a:computer terminal
and support for a program of computer lit-
eracy. We were taught how to use the
BASIC language and how to operate the
terminal on a large Hewlitt-Packard time-
sharing system.

Our science teacher, John Di Lullo,

-played a major role in establishing com- " -
puter literacy class®s at our school and ~
throughout the city by helping to develop -

Coiaputer Literacy: A Guide. This hefty

“ manual is currently in use and contains de-

5

* tailed lesson plans, sample computer pro-_

grams and runs, sources of films, and more
than sixteen hundred computer appli-
citions in a wide variety of fields. Computer
Literacy: A Guide is out of print; however,
"an updated microcomputer version, Com-
puter Literacy, is being published by the
Pennsylvania Department of Education
(Harrisburg, Pennsylvania 17108).

,The other mathematics teacher, Joz Ga-
_ riano, began te! ‘chmg}gmputcr literacy io
" fourteen rinth-grade classes including aca-

. demic, general, and prac.xcal'arts majors

There was one terminal in his room to
serve classes of about thirty-seven students,

-

S . i
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which met one class mecting each week.
“There was a problem in getting each stu-
dent hands-on experience.

When I began to teach these courses, the

- students ‘did a“lot of seat work on flow-

charts and writing simple programs. Stu-
dents were highly ‘motivated and wanted to
“talk” to the computer. I hung copies of .
their programs in the room. Someone dis-
covered the Snoopy program that prints a
calendar and the cartoon of Snoopy atop
his doghouse ycllipg “Curse you, Red
*Baron.” This printout hung cn our wall
and copies found their way into the princi-
“s office.

One program the students were assigaed
that caused excitement throughout the
school was the rabbit program:

An ecologist places a pair of rabbits on
an island. The islac:! is otherwise un-
inhabited and the food supply is plenti-
ful. There will be no predators during
this experiment. )

This particular breed of rabbits matures
in exactly two months. At the end cf the
first two months, the female gives birth
to a single pair of rabbits (one¢ male, one
female). Each pair of newborn rabbits
takes two months to mature, and then
euch female gives birth to a single pair of
rabbits. After reaching maturity, each fe-
‘male gives birth to a single pair of rab-
-bits (one male, one female) at the end of
every month. This continues without
mishap for 36 months.

Write a BASIC, program that will com-
pute and print for'each of the 36 months
 the number of pairs of rabbits. At the
" end of the 36-month period, print the to-
tal number of rabbits present on the is-
land. (From Computer Literacy: A Guide,
Division of Instructional Systems,
School District of Philadelphia, p. 168.)

~
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As you can imagine there were many dis-
cussions, a.zuments, and guesses about
how many rabbits there would be. Many
incidental concepts were learned along
with new vocabulary. The answer,
1.49304E+07,” generated - more questions.
We took time to develop their understand-
ing of scientific notation.

Students enjoyed learning how to play
some of the games from the library in t.¢
computer. Favorites were Tictactoe (the fa-
miliar game of Xs and Os with the students
working furiously to beat the computer),
Bagels (a logic guessing game in which the
computer pxcks a three-digit number; the

student guesses the number: and the com-.

puter tells whether each digit is in the right
position, the wrong position. or not in the
number at all—similar to the game Master-
mind®), Guess (students guess a random
number between-1 and 1000 chosen by the
computer; the computer prints whether
each guess is too high, too low, or correct
and then prints the number of guesses
taken), Hangman (the familiar word guess-
ing game—but with the computer picking

the secret word and printing out parts of

the gallows with each missed letter guess),
Speed Drill (a timed drill with whole num-
ber 4+, —, X, + probiems), and Findit (a
crossword puzzle generated from student
input of words). In addition, problems for
computer solution were assigned, and stu-
dents could reserve computer time by sign-
ing a reservation sheet above the terminal.
Time was available before, during, and af-
ter school. Several good typing students en-
tered and ran the programs during their
fres period. They put comments on the pa-
pers when programs wouldn’t run.

In 1971 I began to teach mathematics
- and computing at a new Parkway Program
tnit in Germantown. Naturally I Jooked
fcr a terminal, only to find that it was
twelve miles away. Since this school used
community- space, I looked in the neigh-
borhood and hit the jackpot. Community
Computer Corporation. a2 computer time-
sharing business, was owned by two educa-
tional boosters, Walter Friedlich and Ernie
Philips, who donated the use of their meet-

t

* Hatfield, Johnson et al,

ing room to my basic mathematics and
computer classes. What a great wyear that -
was with youngsters learning about com-
puters from the inside of a computer busi-
ness. Some of the programmers described
what they were writing and also explained
how students could use the terminals to
program the same compater that was con-
trolling the production of steel via tele-
phone lines at a mill twenty-five miles
away.

We used the CAMP textbook series
(Computer Assisted Mathematics Prograr:,
Scott. Foresman
and Company, 1968) and Basic Basic by
James S. Coan (Hayden Book Company,
1967) as resources.

Many ideas for programs came from the
students. They wrote programs that printed

Many ideas for,progrars
camie from the students.

tables of squares and cubes, the number of
heads in x flips of a coin. and grocery bills
and change due. They also learned to com™
plete mathematics, homework by writing
programs. The class worked best in groups
of three to five students. R}

Two years later we hoved from the com-
puter center to a reg' 'ar classroom. Fortu-
nately, we were able to get one terminal at
Parkway. Al my classes had an opportu-
nity to interact with library programs and
to write and run some of their own pro-
grams. One group of students wrote a com-
puter program that printed *“‘poetry” from
the words input by others. Another group
organized “speed drill” tournaments in
which students competed to see who got
the most problems correct from a set gener-
ated by the comhputer.

This past year we used an Apple I mi-
crocomputer. Students having dlfﬁculty
with signed numbers in algebra cotld - -get
some drill and instruction from Steketee's
“Number Line” program (Steketee Educa-
tional Software. 4639 Spru. St.. Phila-
delphia, PA 19139). Prealgebra students

i
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worked on programs to generate sequences
and simulate a fast-food cashier. Students
in the computer mathematics classes began
by dramatizing parts-of a computer and
later programmed a robot (portrayed by
one member of their small group) to rise
from a chair,:cross the room, touch the
wall, return to the chair, and sit down.

Groups of four or five
students rotate class-time
use of the microcomputer.

"Radio Shack let us borrow a color com-
puter to use in class for a couple of days.
During that time we saw students we didn’t
know were still enrolled in our course.
Everyone wanted to make the computer
draw color pictures and make music.

Groups of fou~ or five students rotate
class-time use of the microcomputer. When
it's appropriate, they’ll run a demonstration
program for the claus. Usually the program
will include an input statement so that the
class can interact with it and maXe hypoth-
eses. First, students guess the results, then
one team member enters the guesses and
the output is discussed excitedly by the
whole class. An elementary example is a
short program that takes a student’s input
value and generates an output value for an
equation like y = 4x + 7. Students try to
guess the function. The best programs
have, naturally, been those initiated by the
students, although 'many texts offer ex-
amples (see references). The students keep
me on my toes by their constant questions
that begin with “How can I get the com-
puter to do this?” Every day is different.

Last December some of my students and
I attended a microcomputér fair at Temple
University. They enjoyed working with the
equipment and trying commercial pro-

grams as well as their own. Some did re- .

ports on the outing and on possible careers
in the computer field.

1 got started teaching about computers
by volunteering for in-service training and
ihen for teaching computer-classes. There

147

were no problems getting students moti-
vated to learn; they were eager! You know
some of the activities we found successful.
Now it is your turn to get started.
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Th'c content of this article is the re-
sult of a class taught through a summer
program run by the Tempe (Arizona)
Parents Gifted Association (TPG).
During the summer of 1979, gifted stu-
dents from the Tempe Elementary
School District and other interested
students from the fifth through eighth
grades were allowed to enroll in 2 vari-
cty of classes. One option was a course
in BASIC programmirig. Instruction in
the class was based on the book
BASIC for Beginners (Bitter and Gate-
Iey 1978). )

Classes met three hours a day, four
‘days a week, for a period of five weeks.
Half of the instruction time was in re-

lated mathematical topics and half was -

in BASIC programming. Students
spent about three hou.. a week enter-
ing and running programs on remote,
telétype terminals connected by tele-
phone line to Tempe Union High
School’s PDP microcomputer. Sixty-
two students completed the course.
The discussion and recommenda-
tions that follow are based on tech:
niques used with and observations
from the fifth- and sixth-grade group.
In most cases they arz also relevant to
the seventh- and cighth-grade group.

James Wiebe is currenily assistant professor of
ev.riculum and instruction at the, University of
Sow.estern Louisiana. His previous professional
experience includes seaching mathematics at ele-

-~ -mentary, secondary,.and college levels.in regular

classrooms and in clinical setngs in California,
Arizona, and Zaite, Africa. In s present posiion
he teaches undesgraduate and graduate elemen-
sary mathematics methods course.

Observations

Experiences with the 1979 summer
school class in BASIC programming
indicate that it is feasible to teach
BASIC programming to average and
above-average upper-clementary stu-
dents. The programming structures
that students-are able to master, how-
ever, depend on the student’s aptitude,
maturity, and interest in programming.

Many students came into the course
with no idea what it would be like!
Their notions of computers were based
on télevision programs, popular movies
like Star Wars, and programmable
electronic games. As a result some
thought computer courses involved pri-

marily activities and games with the .

computer. It was also apparent that

some of the students were ot prepared .
. for an intellectual challenge, especially

during the summer. The majority of
the students, howevef, soon became in-
volved in the class.

One might expect that many stu-
dents in a gifted program would have
received advanced instruction in
mathematics. As it turned out, how-
ever, all students in the program
needed supplementary mathematics in-

.. struction. For example, only a few of

the students in the course had been ex-

. posed to either decimal numeration or

integers. Supplementary concepts cov-

L\ /“'.- s
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ered in the course included decimals,
exponential notation, integers, begin-
ning algebraic ideas (¢:g., variables),
bases other than base ten, and logical
structures and notation (¢.g., the differ-
ence between and and or). In general,
students mastered these concepts very
quickly. )

At the beginning of the course, many
students warted to go run their pro-
grams immediately, ﬁcforp they had
properly thought them through, It ap-

" peared that these students ‘were not

vsed to working problems through a
step at a time. Rather, they were used
to taking “intuitive leaps” to solutions.
As the course progressed, however, stu-
dents began to see the value of having
their programs well designed and
coded before trying to enter them, es-
pecially when they realized that they
had only 45 minutes a session to enter,
debug. and run their programs. Thus,
an early course in computer programs=
ming might be good ‘preparation for
later work in mathematics requiring
step-by-step solutions and proofs.

As for the type of -assignments the
students were asked to do, the ¢hildren
generally were not as interested in
long, complex computer calculations or
organizations of vast quantities of data L
as they were in having the printer do
“peat” things. For example, they liked
having the computer print out funny
stateme: ts, using the INPUT com-
mand and having a friend interact with
their program, having the printer print
out sequences of numbers or “words,
and having the computer print out de-
signs. co
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" graims of their own).

Some students did not understand
the more complex voncepts presented
in the course, such as imbedded loops
and subscnptcd variables. It is not
known jf ‘students would have mas-
tered these topics if more time had
been spent on them. It is possible that
with a more leisurely instructional
pace, with more examples and concrete
experiences, these students might have
mastered the concepts. In any case, stu-
deats who did not understand the more
complex programming structures and
techniques seemed perfectly happy to
nun simpler programs of their own de-
sign and to enter and run more ad-
vanced programs used as examples in
class (rather than write advanced pro-

B

Recommendations -

The following recommendations may
be of value to persons planning to be-
gin BASIC' programming courses for
clementary students.

1. Students should be provided with -

" the necessary mathematics background

before or during the programming

2. As often as possible, use concrete,
pictorial, real-life examples of the con-
cepts presented. Using mailboxes for
memory locations, and having students
walk through paths drawn on the floor
to demonstrate loops are examples.

3. Use games and activities to rein-
force concepts. “Computer Baseball” is
an example. In computer baseball, stu-

dents are divided into teams. When"~

students come to bat, they are given a
question. If they answer it correctly in
a given amount of time, they go to first
base; if not, they are out. The game
lasts a predetermined number of in-
pings. Questions may involve such

- - things as the contents of a storage loca-

tion dfter-a given number of “‘mes
through a loop.”

4. Assignments should be mulu-
leveled so that the more advanced stu-
dents are challenged without the
slower students becoming_frusirated.
For example, more advanced students
might be asked to develop their own
uniqie programs involving loops as
lﬁhctiptcd variables, while slower stu-

dents are asked to complete and run
programs involving the same concepts
but using examples given by the
teacher.

5. Introd'ice the PRINT and INPUT
cormands, string data, and mathemat-
ical functions early® Later introduce
ideas such as loops and subscripted
variables.

6. Assignments should be in-
trinsically interesting to pupils. “Real
life” applications of the computer, such
as data organization and scientific ap-
plications, do not appear to be as inter-
esting to pupils as writing programs
that draw designs, print funny stories,
or print out a lot of data from a short
program.

7. Have students ﬁowchart and code
programs before éntering and running
them.

8. Do not allow studcnts io use their -

on-line time with “canned” programs.
They should write and run their own
programs. =

9. To show-the value of thc com-
puter and to keep pupils from using
programming shortcuts, assignments
involving mathematical computations
should be too complex to be done by
hand. .

10. If pupils are shanng terminals,

* be sure to monitor their on-line umc If

you do not, more aggréssive students
will dominate the terminals.

Assignments

Following are a sguiplfrig of assign-
ments that upper clementary students
might find interesting and challenging.

. Construct a flow diagram for us- -

ing a soft drink machine.

2. Run the following program from
start to finish. s

10 LET X = 256875
20LETY = 153097 .
30PRINTX,Y,X+Y,X*Y
4END * "

¥

(* means multiplication)

3. Write a BASIC program to double
$0.02 " {2¢), 26 times. Béfore running
the program, estimate what the answer
will be.

4, Write a funny paragraph. Using
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the PRINT statement, write a program
that will print your paragraph.

S. Write, enter, and run a program
that prints your initial in a large block
letter. .

XXXXX XXX XXXXX

XXXXX XXXXX XXXXX

XXXXX XXXXXXX XXXXX
KXXXXXXX XXXXXXXX
XXXXXXX XXXXXXX
XXXXX XXXXX

6. Use the lF-THEN and GO TO
commands to write 2 program that
reads a number (X) in a line of data
(someone’s height, for examp!=), makes
a 'decision, then jumps to an. prints a
statement about that number: (for ex-
ample, if X'> 50, “YOU ARE TALL.”
Draw a flow diagram for this pro-
gram. -

7. Write a program that someone
else can run. Have the program ask the
person some questions (use the INPUT
statement). Use that inforziation in a
silly story. For example: ~

WHAT IS YOUR NAME?

< JOHN
WHAT IS YOUR FAVORITE
ANIMAL?
DOG .
WHAT IS YOUR FAVORITE
NUMBER?
7

- ONCE UPON A TIME THERE
WAS A FAMOUS DOG ,
NAMED HORTENCE AND HIS
FAITHFUL SERVANT JOHN
WHO WAS 7 YEARS OLD..

Of course, your program should be
longer ‘and more interesting than this.
After you have debugged the program,
have a friend try it.

8. Run the following program.

10 LET X'= 2

20 LETY =2

25 PRINT ‘I AM. AT LINE 25’
30 [F X =Y THEN 10

40 END

‘After 15 seconds, stop the execution by
hitting the BREAK key. Draw a flow
diagram for this program.

9. Write a program of less than 10




"lines using IF-THEN and GO TO that
prints out the numbers from 1 to 100
next to each other. '

10. Write a program that—

A. Prints 0.1 the following:

“Central Control of Space-
ship Enterprise to all crew

members: All units have

been checked and are ready
to blast off for Venus. All
personnel to stations. Secure
safety belts. Ready.” '

B. Uses the IF-THEN, GO TO

statemeénts and 2 counter to

<, print out the countdown
" from'10 to I;

C. Prints
“BLASTOFF™;

.D. And prints out a ;)ictux_'c ofa
rocket blasting off.

14

11. Write a program of less than 6
lines using FOR TO, NEXT to print
the numbers 1 to 100, skipping every
other number.

12. Use TAB (I) and FOR TO,
NEXT commands to make a geometric
design. -

13. Write and run a program that
uses the RND (X) command to simu<
late a coin-flipping game.

Conclusion

Although the class discussed in this pa-
per was originally designed for gifted
students, many of the students in the
class had not been identified as gifted
by the school distnct—they had signed

up because they or their parents were:

interested. These students mastered
many of the concepts and procedures
presented in the class, successfully de-
veloping and running their own,
unique programs. Thus is appears that

v

£

many of the concepts and techniques
in BASIC programming can be taught
to the average upper-elementary-
school pupil. especially those who are
highly motivated. ;

" Because of the present and future- -

importance of the compter in our so-
ciety. and because of the educational
benefits derived from learning to pro-
gram, we should consider making be-

ginning programming experiences a- .

standard part of the upper-eclementary-.
school curriculum. A prerequisite is’
that prospective elementary school
teachers, especially those who plan to
teach mathematics at the intermediate

lével. become proficient in a program- |

ming language. preferably BASIC, and.

that they learn methods for teaching

elementary school pupils to program.
Referente .

“Bitter, Gary G.. and Wilson Y. Gateley. BASIC

_ for Beginners, 2d. ed. New York: McGraw-
Hill, 1973. @ -
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: Computcrs are rapndly becoming ac-
. cessible to everyone. The costs of pur-
_ chaschave contmucq to decrease, with
- the fecent miniprocessors and miggo-
~ processors rcpres:nung pncmg break-
throughs, and inexpensive micro- ‘
computers being promoted as personal,
homg computers. Though much of
their suggested usages to date relate to
family leisure or home management,
some vendors offer-packages for com-
puter-based games and drills involving
mathematical ideas. Instructional pro-
grams will become increasingly avail-
- ableas the marketplace develops. To-
<. ‘day’s middle school students are
- growing up in a computerized society.
:: Students probably feel more comfort-
—Jble(oftcn excited and curious) with
the prospects of “everyman’ routinely
'3 using computers than do many adults,
= who'still view computers s complex
> "and futuristic.

5—'iGoals for
- Mathematical Education

2" We teach mathematics in a changing

~ ~world. The discipline of mathematics
and its applications are part of this

> ‘continual evolution and our per-

T Jpecmcs abolit the teaching and learn-
~ ing of mathematics must reflect this _

- changing world. Our instructional

* goals and practices must be examined

" As anassoclate professor of mathematics educa-
tion at the Unicersity of Georgia. Larry Haifield is
) @ teacher and researcher. He has done mathemat-
fex with studenis of all ages and mathematical
adkacation with both presercice and insercice teach-
" ers. Cwrrent interests include middle school teacher
*_ aducation, problem solcing. algorithmic learning,
" megthemaltical abilitles, and computers in mathe-
" matical education.

LM
!

RN
! \

Xgprinted by perrcission from Aritimetic Teacher 26:

A Case and Tééhniques for Computers: © -
_Using Computers in |
‘Middle School Mathemahcs

° A

_ frequently to assure that we are provid-

ing for today's students an adequate
mathematical education to function in
the society of, at least, the near future.
With this in mind, the following ideas
about effective mathematics learning
and teaching are summarized to sug-
gest some viewpoints for considering
possible appllcatlons of computers into
middle school mathematics class-
rooms. ‘

1. Mathematics learning is primarily
a person-centered, constructive pro-
cess: students build and modify their
knowledge from experiences with task-

. oriented situations characteristic of

mathematics. Students must experience

) opportumtlcs and develop feelings of

responsibility for revising, refining, and
extending their ideas as the ideas are
being constructed. Instriiction based
on thé concept of constructed ideas will

_ allowand expect errors or short-

comings in the student’s responses at
certain stages; the processes of identi-
fying and correcting these are integral
to the learning. Computers can be effec-
tive instructional contexts for such con-
structive approaches to learning. For ex-
ample, if the learning tasks involve
writing or understanding a computer
program, the student may be called upon
to build up a procedure, test it, find the
errors or inadequacies, correct or im-
prove it, lest it again, and possibly refine
or extend it toamore general procedure.

2. Solving probiems is the most es-

" sential of all basic skills needed in our
complex, changing world, and learning

to solve problems that involve.mathe-

- matics is the most fundamental goal of

mathematics education. Studying the
, processes one uses in constructing a so-
* [
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* lution to a problem may be of great

assistance in knowing generalized, per-
haps heuristic, approaches to prob-
lems. Various types of computer usages
can feature.mathematical problem solvs
ing and its study. Student-written com-
puter programs can incolve considerable
problem solving. |

3. Most school mathematics curri-

. cula put a major emphasis on al-

gorithms. Children learn not only com-
putational procedures for various
operations but also procedures for han-
dling almost every mathematical task
they encounter: finding solution sets,
evaluating expressions, simplifyving
fractions, factoring. finding special

- numbers (e.g., prime numbers, greatest

common factors, square roots, and av-
erages), completing geometric con-
structions or transformations. renam-
ing (c.g.. fractions to decimals).
graphing, checking (e.g., comruta-
“tional results), estimating. and so on.
In most treatments the procedures are
presented “‘ready-made.” As a result,
student learning of algorithms is often
imitative behavior. If we believe that
mathematics ought to be a sensible re-
sponse to a reasonable situation, then
more attention should be given to help-
ing children to construct procedures
Helpmg students to identify hmltatxons
of revisions for their created al-
gorithms can lead to significant think-
ing. Computer programs are algorithms.
Middle school students can learn to con-
struct and use computer procedures for
many mainline mathematical ideas.
Such activity can further important
goals related to algorithmic learning.

4, Effecting quality learningisa
complex combination of many factors.
A reliable, knowledgeable source of

'
-
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help that'generates. in a patient man-
ner. interactive reteaching, practicing,
and testing for cach student. along with
accurate records of student responses
ang cumulative progress, would greatly
assist the harried classroom teacher.
Computers can be programmefi 10 pro-
vide suclrassistance to the teacher. and
teachers. as nocice computer program-
mers. can readily learn 10 write and eval-
uate such computer programs.

Instructional
Computer Usages

* Most of the exploratory usages of com- -

puters in school mathematics have oc-
curred in the past ten to fifteen vears.
Major attention has been given to
teaching elements of computer lan-
guages. such as BASIC or FORTRAN.
~ and to engaging mathematics students
in writing and using computer pro-
grams for various mathematical topics.
This use of the computer reflects the
obvious interaction of the program-
“mable. numerical. “logical™* machine
and certain qualities or aspects of
mathematics. Several other types of
computer applications to teaching and
learning also have heen identified and
explored. Let's briefly examine some of
these usages of the computer before
considering strategies for their imple-

mentation. ;
[

Frogramming

Mathematics students of all ages
throughout the world are writing and
executing their own computer pro-
grams. Mathematics teachers citcsev:
eral purposes for students’ engagingin
such programming tasks: (a) building
“computer literacy™* through firsthand
experiences with the capabilities and
limitations of programmable machines:
(b) reinforcing a taught (noncomputer)
procedure through students’ analyzing
its steps and restrictions in order to
construct a computer algorithm (pro-
gram): (¢) illustrating the yse of a com-
puter program asa dynamic problem-
solving tool=-even a poor program. as
an active object. can be executed. **de-
bugged.” and modified: (d) providing
transfer experiences through students’
usiny their knowledge to **teach™ the
machine 0 generate the desired output:
Q ) stimulating high levels of student

:ERI Cotivation and pessistence toward

A Text provided by ERIC

.
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more general, perhaps clegant, pro-
grams: and ¢) emphasizing methods of
solving. discovering. and generalizing
by building programs. studying a pro-
gram’s output. gnd extending revised
programs toward algorithms aimed at
handling entire classes of problems.

Middle school mathematics abounds
with situations that can be approached *
as programmings tasks: (a) finding so-
lutions to apen sentences: (b) testing
for properties of number systems: (c)
number theory topics—finding prime
numbers. multiples. complete facto-
rizations. greatest comnon factors.
least common multiples. and deficient.
perfect. or abundant numbers: (d) solv-
ing measurement problems——peﬁme- )
ter. area, volume.and angle relation-
ships: (¢) manipulating fractions and
decimals—renaming. simplifying. per-
forming the four arithmetic operations.
and ordering: and () solving applied
problems—finding averages. solving
proportions. calculating percents, and
figuring probabilities. ‘

-l
Practicing
Computerized practice has been exten-
sively applied to school mathematics
instruction duringthe past fifteen
vears, Of course. the fundamental pur-
pose of a practice session at a computer
terminal is to rehearse for more auto-
matic recall or recognition of certain
aspects of the ideas previously taught.
Practicing programs usually donot
deal with explanations of mathematical
ideas. The role of the teacher is to de-
velop the background understandings
necessary for effective practicing to oc-
cur. Although of uneven quality, many
practicing progeams do exist.
’

Tutoring - .

Computer-based tutorial instruction
involves the use of the machine to pre-
sent an introduction or review of ideas
which are not adequately known by the
student. The stored program atiempts
to simulate a good tutor as it in-
troducgs. explains. characterizes. ex-
emplifies. asks questions. accepts and
evaluates responses. diagnoses diffi- .
culties. provides feedback and rein-
forcements. monitors performances.
and selects appropriate placement into
subsequent lessons. Tutorial programs
are similar in structure and function to
practice programs but often contain
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consides nly more detailed text to be
used in explaining the content of the
Iesson. They are usually more complex
and costly to prepare and to offer than
practice programs. Althcugh much at-
tention has been given to the experi-
mental dexclopment of tutorial pro-
grams in certain federally-funded
projects. this computef usage has not
become widesptead. With lowered
costs for computers the prospect of
such private tutoring may become
more feasible.

Simulating and gaming

As a simulation device, the computer
can often be used to deal with other-
wise unmanageable phenomena. The
advantages of computer-based simula-

-

“tion include the measurement and ma-

)

nipulation of variables that are difficult
or dangerous to assess. the opportunity
to experiment when it is not otherwise
possiblc. the control of **noise”” {irrele-
vant variables) that might otherwise 3
obscure the item to be measured or
studied. and the compression of the
time dimension to allow long-term
events to be studied in shortperiods of
time. Among the contexts of possible -
interest to middle school mathematics
teachers are situations that use proba-
bility models as well as other physical
and social science applications of
mathematics. The following are some
examples of simulation programs: (a)
probability (flipping coins, rolling dice,
blinded drawings). (b) economics
(playing the stock market. purchasing
via loans. ruling a develgping nation),
and (¢} sciences (effects and control of
water pollution. piloting a spaceship,
chemical or nuclear reactions, genetic
manipulations). . :
Gaming programs are simulations
feaiuring competitive settings in which
one or more plavers can play, score,
and win. Hundreds of computer-based

" games exist. with many appropriate to

objectives of middle school mathemati-
cal education. '

Testing

‘Fhe computer has been programmed to
sci ‘¢ as a test generator and adminis-
trator. Conceivably, each student could
be given a tailof-made examination
where the choice of objectives as well as
number and difficulty of.items for each
objective would be specified for cach
student.
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90 FORD=170 2L,

80 PRINTD;
60 NEXTD

" 80 END |

~ FACTORS FOR WHAT NUMBER? 12
i 1 . 2 3 4 6 12 .
FA(.TORS FOR 'WHAT NUHBER? 35
4 5 7- 38
FACTORS FOR WHAT NUHBER” 59

1 69
—~‘FACTORS FOR WHAT NUHBER? Y4
.- 3 3 19 57
- FACTORS FOR WHAT NUHBER’
< 3 101
s FACTORS FOR WHAT NUMBER? 864
.3 2 3 4 6 8 9 12 16
98 108 144 216 288 432
‘- F:CTg;S FOR WHAT NUMBER? 97
+~ FACTORS FOR WHAT NUMBER? 27
- % 3 9 27

101

M?lFNrD<> . )27'(71/) HEN _ 9O

1o 'REM ** FIND ALL FACTORS OF A NUMBER **
20 INPUT “FACTORS FOR WHAT NUMBER", N

18 24 27 32 36 48
864 .

54 72

B ngum not -
- This s an example of a structured, incomplete programmiig task.
“Unes 1 and 10 are simply remarks, ignored by the computer during execution. ,

~-Lines 30 thfough 60 set up a “loop™ where the st of possible divisors 1 through N are tested.
The condition in iine 40 tests for even dmsubmty skipping on to the next trial divisor (line 60) or

ptlnlng a divisor (line 50).

Using Computer‘s
.. in a School.

- ‘To many mathematigs teachers the
. prospect of incorporating the use of a
.. computer into their curticulum appears
- asan educational "fyture shock.” As a
rapidly growing number of teachers in
.- hundreds.of schools are finding, how-
- _- ever, the machines and accompanying
~ - materials are oriented toward the nov-
" ice who has little or no programming
- and computer background. The com-

~ puters are simple to operate. being

qmtc“foolproof and programming
languages, such as BASIC, are casy to
- learn, yet powerfu} and flexible cnough
10 satisfy the most advanced student.
7Numerous journals, oriented to the ed-
ucational dser of computers, prowde

o
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classroom suggestions and actual pro-
gram listings. A variety of resource
books for mathematics teachers pro<
vides detailed suggestions for devel-
oping student programminz Most
computer compamcs sponsor educa-
tors’ “users groups” that offer informa-
tive rewsletters, meetings, and a clear-
inghouse service for exchanging
computer programs among.members.

And professional associations, such as

the NCTM, offer workshops at their
meetings and written materials in their
journals and supplementary pub-
lications to help teachers with com-
puter-oriented activities.

A school typically begins a program
of computer use with limited access to
acemputer, a single ‘terminal or com-
puter. Through workshops. teach-
ers can learn to operate a mini-
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_ grade teacher, for example, mlzhtdc-\

their own programs, the teacher might

‘guage and how a program can be con-

computer, run stored (ready-to-use)
programs, and write and execut
simple BASIC programs for several
mathematical topics taught in the \
middle school curriculum. A sixth-

cide to focus on two types of uses of the \
oomputcr with his or her students dur-
ing the first year of computer use,
simple programming tasks and stored
practicing programs. To develop the
knowledge needed for students to write

begin by discussing and demonstrating
completed programs: later the'students
can be given incomplete algorithms

which they analyze, complete, and exe-
cute. As students learn°the BASIC lan-

structed, they will become more ableto .
initiate their own programs for mathe-
matical tasks.

The following is an example of stu-
dent programming tasks for @ particu-
lar unit to be studjed:

The whole number system

(a) Find sums, differences, products,

and quotients.

{(b) Simplify number expressions.

(c) Make lists of pairs, given a function
rule.

(d) Find factors (see fig. 1).:
(¢) Determine primeness.

(D Find all prime numbers in a given
mterval

Summary

Computers can be used in educational
settings and for instructional purposes
in more ways than are generally real-
ized; they can be much more than a
means to individualizing testing or
drilling for competency in basic facts.
Computers can be teaching aids that
heJp to achieve the objectives for

. mathematics learning identified earlier,

in this article. When access to a
compater is available, students will'be"
able to dse the computer for pro-
gramming the solutions to problems;
for simulating situations in order to
test hypotheses; for gaming, as a study
of probability and statistics; as well as
for practicing, testing, and tutoring.

The purpose of this articleis to help _
teachers become aware of the potential
for this multiusage approach to com-
puters.(]
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LET'S PUT COMPUTERS INTO THE
- MATHEMATICS CURRICULUM

By DONALD O. NORRIS
Ohlo University
Athens, OH 45701

I propose a rather drastic restructuring of
the traditional high school mathematics
curriculum for those students who plan to
go to college. Whereas this proposal is
aimed primarily at the college-bound stu-
dent, it should encourage cvcryonc to study
more mathematics.

- The heart of the prOposal is to delete
plane geometry as a required course in the
traditional academic sequence and to re-
place it with a ycar-long course in com-
puter programming. My reasons for mak-
lng ‘this -proposal are based on my

. experiences as a college teacher. Students

often study only two years of mathematics
in*high school. They have usually studied
first- year algebra and plane geometry. One
year of algebra is grossly inadequate for the

dy of mathematics in college. Bear in
mind that most college curricula require

the knowledge of mathematics beyond ‘the’

ﬁrst-year-algcbra level. For example, engi-

4 neenng\and science majors require ¢alcu-

lus. Psychology majors and soctology ma-
jors are usually required to sake a statistics
course. All education majors take some col-
lege-level mathematics. -and business ma-
jors are often required to take a calculus se-
quence. By the time students get to college,
many have forgotten most of the algebra
they did learn. ’

I believe plane geometry is in the cur-
riculum for historical reasons. I can recall
reading about liow the formal reasoning,
the use of logic, and the mental discipline
required to prove theorems in plane geom-
etry would do wonders for the student’s in-

tellect. I dont think such claims have ever .

] been proved It is true that in the study of

There is plenty of room in lhe curriculum if we just
drop the study of geometry.

plane geometry, one is introduced to
" mathematicdl thinking, that one learns the
rudiments of logic, and that one must be
disciplined; but very few people ever go
into a discipline that uses mathematical

g thmkmg, and there are certainly many

other ways to learn about logic that do not
involve the study of ‘plane geometry.

I would classify mathematical thinking
as a form of problent.. solving, It involves
the analysis of given qformauon and the
synthesis of the information to’ discover
new facts. This type of reasoning is very
difficult. I know of no better .way of in-
troducing it'to students than through the
use of computers. In addition, computer
programs must be very logically con-
structed. They. are, in fact, a proof of the
computability of some result. It goes without
saying that computers demand, discipline.

One cannot deviate one jota from the pre-

scribed rules of syntax (the computer lan-
guage) or else one is presented with an er-
ror message.

> Let me try to illustrate some of these
ideas. In algebra we teach students how to
solve quadratic equations. 1 presume that
the usual procedure is to show them how to
complete a square oo sample problems and
then to do gt in general to derive the stan-
«dard quadratic formula

-b + Jb*—4ac
X 22 ~"

3

If your students are like mine, they become

" glassy-eyed somewhere in the middle of the

development and stop hstemng They real-
ize that all they need do is to recognize a
quadratic equation and to memorize tae
quadratic formula to solve it.

Now «suppose you asked students who
have learned the quadratic equation to

Reprinted by permission from Mathematics Teacher 74:
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write a program to_print out the roots of a
quadratic equation. They would have to do
analysis of the following sort:

1. Read in a, b, and ¢.

2. Check whether @ = 0, because’in that
case they have a linear equation and
can’t use the formula. -

3. Compute the discriminant, d = 5 — 4ac.’

a) If d > 0, they will transfer to 3 part -

of the program where real roots are
handled.

b) If d =0, thcy will transfcr t0a part
of the program where rcpcatcd roots
are handled.

c) If d <0, they will transfcr to a part
of the program where complcx roots
ar¢ handled.

4. Print the results, making it clear what
case they are in.

5. Provide the capability to repeat the pro-
gram on a new set of data.

Compare the mental activity required to
solve a quadratic equation using the for-
mula with the mental activity required to
program the computer to use the formula.
In the first instance the probliem can be re-
duced to rote memorization, as it usually is;

and this does not.involve the us¢ of logic or ~

problem-solving techniques  except in a
very meager way. However, the computer
program required to solve this problem re-
quires an understanding of the formula, the

ability-to distinguish all the possible cases

that might arise, and the ability to explain

te an idiot (the computer) the precise in- |

structions it must follow to obtain the de-
sired results. N

As a second cxamplc, consider thc prob-
lem of solving a system of linear equations.
Students usually learn_to solve systems by
substitution or eliminatios. Because of the
large amount of calculation involved, we
usually restrict our attention to two- or
three-dimensional systems. Substitution
works fine on two-duncnsxonalfsystcms, is
unwieldy on three-dimensional systems,
and is an unmitigated mess for systems of
higher orde¢r. Elimination-is a good

method, but is usually taught in a non-
algorithmic: way. Since we restrict our at-
tention to low-order systems, we attempt to
teach our students to recognize from the
structure of the problems. which variable
should be eliminated. This approach is
hopelessly inadequate for higher order sys-
tems, and since students do not learn the
algorithmic approach.(essentially Gaussian

climination) they are unable to tackle suc- -

cessfully higher order problems.

Now, if you want to program a computer
to solve a system of linear equations, you
must have a thorough understanding of the
climination algorithm. You must under-

stand that interchanging the equations does

not affect the solution, or that multiplying ..

an equation by a constant does not change
the solution.- You learn. that the variables
are of mo consequence—it is the coeffi-

“cients that determine the solution. You

have a natural vehicle for introducing ma-

trix algebra and determinants, because you
must store the coefficients of the system in
a two-dimensional array. Finally, the elimi-
nation algorithm leads very naturally to the
consideration of special cases such as a row
of zeros, except in the last position, or a
row of all zeros.

It requires a tremendous

amount of problem-solving

ability to make a computer
- solve a problem.

'Programming the solution of a linear
system is certainly not a trivial task and

- should probably be one of the last topics
, taught in a year-long course. But the payoff

is large. A great deal of analysis and syn-
thesis must be accomplished. Im addition,
the computer solution leads naturally to a
study of matrix algebra.

* Of course, there”are many other prob-
lems one could treat. Fmdmg the roots of a
polynomial by the bisection method is an
casy problem. Sorting a set of numbers into
ascending or descending order is easy to do
without the aid of a computer, but it is-an

A s
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intellectual challenge to program a com-
puter to do the sort. It is easy to think of a
variety of everyday-life problems that can
be programmed. For example. one might
write a checkbook balancing program or a
simplified income tax computing program.
My point is this: It requires a tremendous
amount of problem-solving ability 40 make
a computer.solvéa problem. It requires the
kind of analytical thinking we want our

- students to learn. In addition, it is im-

mensely practical to learn how to program.
In the next ten years, it is likely that most
college students will learn how o program
computers and will use- the knowledge
gained (the problem-solving lcchmqucs) in
their jobs.: With the advent of micro-
computers such as the TRS-80 and Apple,
which are very cheap and have tremendous
compuung capabxhty there is a revolution
coming in the use of computers. It will not

_be uncommon fo households' to have mi-.

’ ctooomputcrs, They will be used to play

games and maintain household financial .

records. People with programmmg skills
will have the ability to take full advantage
of them. It behooves us to educate our stu-
denfs i their usés and limitatiops. =
Computers provxde fccdback to the pro-
grammer that-is unlike the information we

give our students. Syntactical errors are
h’ hlighted almost instantaneously. There

is never any doubt. 2bout intentions or
meaning. The computer.accepts ‘only what
it is programmcd 10 accept, and nothing
else. Students must learn to follow the
rules, and if they don’t, the computer pro-
vides immediate feedback.

The analysxs required ta test and debug a
program is very valuable. One must under-
stand the structure of a problem in order to

provxdc an adcquatc set of test data. Trying -

to decide why the machipe did what it did
instead .of wl\at you wanted it to do is a

very -worthwhile experience in analytical

. thinking.

My experience with junior and senior
hlgh school students leads me to believe
that the computcr can serve as a device for
. motivating students to learn more malhc-
matics. Usually their first exposure to a

. Sophomore year_

1
t
'

i

computer comes when they play a com-
puter game. After the initial chillenge of
game-playing is over. they often want to
learn how to program their own games or
how to solve a mathematical problem.
With a little direction from a teacher. their
mathematical horizons can be broalened
appreciably. 7 '

2500 years of Euchd
might be enough.

Tn order to accommodate the use of com-
puters, I propose the following curriculum

. for college-bound students:

Freshmanyear  Algebral .

Algebra2

Computer program-
ming

Precalculus svrvey

Junior year
/

Senior year*

Electives might include plane geometry,
calculus, or a higher level computer course.
This’ proposal was not. practxcal just a
few years ‘agb because the cost of comput-
&rs was exorbitant. That is no longer the
case. Over a period of a few years any high
school can acquire enough microcomputers
to handle all student ngeds. 7
So let’s .get going. It might take some
courage to drop good old Euclidean geom-
etry, but I think you would like the results;
2500 years of Euclid might be enough.
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IS NOT ALWAYS DRILL * N
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# Microcomputers can help students understand random samples
and other statistical concepis.
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By JAMES W. HUTCHESON

Muscogee County School District
) Columbus, GA 31901

If you say you have computer-assisted

*- instruction in your school, many educators

will think of drill work delivered by a com-
puter. Some will think of simulation activi-
lies in which students “run city govern-
ment” or “mix “dangerous chemicals.”

* Others who have had computer-program-

ming experiences will think of problem
solving. While teaching a statistics class, I
discovered still another use of the computer
to aid instruction.

Calculators have betn used in my in-
. troductory course in statistics to facilitate a
“number crunching” aspect of the course.
Reccntly, a microcomputer was added to

" the list of ‘materials supporting the, course.
” Prior to the time the computer assisted iz

the instruction, 1 had some difficulty in
teaching a particular concept in sampling.
Most students understood that “general-
izations could be made from the sample to
the population when the size of the sample

almost equaled the size of the population. -

However, they were skeptical when the
sample represented a smaller portion of the
population. S

Initially, the students examined the in-
formation on table 1 and table 2. -

Table 1 mdxcgtes the means of ten sam-
ples of size 10 .drawn at random from a
population of stze 1000. Table 2 iadicates
the means of ten samples of size 50-drawn
fromt* the same populauon The students
compared the differences in the population
mean and standard ‘deviation and the
means and standard deviations in the two
different size samples. The students found a
smaller range of means on table 2 than on

table 1. They concluded that the trend ofa

Reprinted by permission from Mathematics Teacher 73¢

smaller range of sample means with la;ger
and larger samples would continue. My
current statistics class was treated to a simi-
lar activity, but with more dramatic results.

TABLE 1
Ten Samples of Size 10 Drawn
from a Population of Size 1000
Sundard
Samples Means - Deviations
10. 16.4 112
10 - 199 120
10 20.1 154
10 204 .88
10 ’ 23.7 16 4
10 -~ 255 107 *
10 ~ 26.5 -, 116
10 27.1 ‘140
10 2713 % 14.6
10 29.0 15.6

Population 255 144

Instead of dist.ibu\t}ng the two tables to -

the students, the class was allowed to
choose its own small sample size and large
sample size. Summary sheets similar to the
tables were .generated on.the micro-
computer and displayed-on the screen (see

\ TABLE 2
Ten Samples of Size 50 Drawn
from a Population of Size 1000

Standard

Samples Means Deviations
50 21.8 148

50 2.5 150 -
50 28 13.5
50 26.1 147
50 263 15.5
50 268 13.5
-50 274 14.9
50 215 130
50 215 142
50 282 , 153
Population 255 144

ol

table 1 in the Appendix for the program).
This live demonstration’ sparkcd the stu-
dents to\begm speculating on the effects of

689-691, 715;

December 1980.
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_selecting even more sample sizes. A dis-
cussion of tandom selection and sample
size- followed that-seemed. to involve more
\tudents than had ever been involved be-
fore. The students selected their own
:amplq sizes and speculated on the range of
Jie .means. Occasionally, a large
o ple size resulted in an unusually large
range of sample means. Initially, students
were puzzled at the “error.”” Then one stu-
dent remarked, “But. that’s just the nature
of random numbers!!™ This insight helped
others to internalize what_had happened. 1
felt most of the benefits of the lesson were
ever. 1 was wrong.

Later in the course, we were discussing
control groups and experimental groups.
Several students gemarked that it was pos-
sible to select two samples at random from.

the samc population and have the samples

be significantly different. They each re-
fered to the computer activity that was
previously cited, where samples were se-
lected from the same population at ran-
dom. The comment was made, “How do’
you know we didn’t accidentally select a
large sample and a small sample?” No stn-
dent had recalled this idea wh=n I used the
summary sheets as handouts. -
Perhaps computers can assist instruction
by developing mathematical concepts that
are remembered better through a live dem-
onstration. Other live demonstrations have
‘been used where students predicied what

" ‘would happen and then let the: computer

verify (or refute) their predictions.

Usually the development of linear re-
gression has included a brief comment
about other predictive procedures. The stu-
dents understood that the line that best fit a

. scattergram might not be straight. How-

ever, I had no success in developing an in-
tuitive feeling for multiple linear regres-
sion. A computer program was used that
was successful in developing this intuitive
feeling. The »rogram generated three tests
A, B, and C and produced correlation coef-
ficients between Tests A and C and Tests B
and C. The user was prompted to pool Test
A and Test B to form a new test, Test X.
The computer indicated a correlation be-

o
¢

tween Test X and Test C. The scores in
Test X were formed by the squation

X=( )4+( )B

The user supplied the weightings for Test A
and Test B. A copy of the computer pro-
gram appears in table 2 in the Appendix. A
sample run with coefficients appears in
wable 3.

TABLE 3

YOU TRIED X = (3)4 + ()3

TEST 4 TEST B TESTX TESTC
i 2 i1 5
4 1 10 8
3 9 45 15
3 6 33 8
6 16 82 12
0.615 0.703 0.692

iS THERE A BETTER CORRELATION WITH A
DIFFERENT WEIGHTING?

. After a few trials, all students seemed to
know which test to give more weight in the
“poolingprocess. 1 asked if the weighting
had o be'positive, and immediately several
suggestions for negative wexghtmgs were
tried by the students.

Following the computer activity, the stu-
dents reported that the test with the higher
correlation should be given more weight-

_ing. I asked how the process.could be ex-

tended to Tests A4, B, C, and D. A student
suggested a formula for generating scores
for Test X,

X=( )A+( )B+( )C

along with the proper order for weightings

on Tests A, B, and C.

I was pleased wuhr’thc rcsults of the in-
wroductory activities and quite pleased that
the total time for the computer activity 2nd
discussions was less than twenty minutes.

Computer programs such as these have
helped me to emphasize statistical thinking
and de-emphasize the arithmetic of statis-
tics. Perhaps this shift in emphasis has been
the most important aspect of using comput-
¢rs in the classroom to aid instruction.

APPENDIX
Now: The TRS-80, Level 11 BASIC uses several func-
(Conumued on pages €91, 715)
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TABLE |
TRIM.... JIM HUTCIIESON, TRS.80, LEVEL i
2REM ... PROGRAM GENERATES POPULATION OF 1000 RANDOM #5
3REM.... EACIS 1-50, USER SELECTS SAMPLE SIZES -
~ 4REM.... PROGRAM RETURNS MEAN & SD OF [0 SAMPLES ORDERED

S REM.... ON MEANS ... PROGRAM RETURNS PCPULATION MEAN & 8D

20 FKINT“PROGRAM 15 LOADING 1000 NUMBERS FOR THE POPULATION"
25 PRINT:PRINT

30 PRINT™A SIIORT PAUSE .. (ABOUT A MINUTE).. "

5S«0SI=0

40 DIM AZ(100).M(10).5(10)

SOIOR 1 = 1 TO 10

55 A'i(}) = RMINS0)

60 PRINT@415 J.AR)

708 =8 + A%{) SI = S| + AR)12

80 N3:XT §

90 PRINT@475,"POPULATION 1.OADED”

10310R J = [ TO 300 NEXT-CLS

110 PRINTNOW SELLECT A SAMPLE SIZE...10 SAMPLFS WILL BE SELECTED”
120 PRINT"FROM THE POPULATION AT RANDOM™

130 PRINT PRINT THI: MEANS AND STANDARD DEVJATIONS WILL BE GIVEN"

140 PRINT-THE COMPUTER WILL ORDER TIIE SAMPLES ON THEIR MEANS”®
150 PRINT.PRINT*HOW LARGE DO YOU WANT EACH SAMPLE TO BE™;
160 INPUT N .,
1S
1R0 FOR} = I TO 10
1A -=0B=0
W0 FORK = I'TON
210 X = AK(RNI{1000})
220 PRINT@470," smm E"J“SELECTED"X
20 A~A+X B=B+X*X
240 NEXT x
250 M(!) =
gglo su)x soR«B—Aﬂ/N)/(N )]
0N
80C1S anrmow ORDERING ON SAMPLE MEANS"
FOR 1= 1TOY
JOIORK =1+1 TO 10
310 IF M(Jy<=M(K) THEN 350
320 [ = M{3) M(3) = M(K) M(K)=I¥
301 = su)su) S(K)S(K) = H
350 NEXT K o "
360 NEXT J
370 PRINT. rnmv‘smm SIZE MEAN STANDARD DEVIATION® -
390 PRINT PRINTFOPULATION EAN ".3/1000SQR (1 ~S13/1000/1000
PRINT.PRINT*POP " ( 1000)
400 PRINTPRESS <ENTER> TO GENERATE OTHER g [
405 INPUT ¥
410 CLS GOTO 150

>

TAN B2

10 RI'.M Y] IIUT(.IIIS()N TRS 0, 1. I.VI.I. i

0 REM ... MULTIPLE LINEAR REGRESSION

30 REM ... USKR ENTERS WEIGHTIHGS - COMPUTER SHOWS PEARSON'S R
4O REM ... USLR TRILS TO GET A BETTER R WITH BETTER WEIGHTINGS
S0 RI'M ... PROMPT OF NEGATIVE WEIGITINGS IS NEEDED

70 REM

80 DIM AB)LB(.LOLTE)

90 (1S PRINTPOOLING SCORES IN A MULTIPLE LINEAR REGRESS!ONTEST"
100 PRINT PRINT* ¢15TS ARE A BAND '

110 PRINT-SAMPLE: NUMBI RS ARE ALREADY LOADED"

12081 05208420 850 56+0 ST=0Sg=0

BOFOR I 17058

140 RTAD ABC

150 A= A BU)B Oy C

16081 S15ASY S2HA°A

170 §3- K34 5 $4- 544 4°8

180 §5- SS+C $6: §64C*C

190 §7- STHA*C SK=SK+BC

20 NI'XT 3

200 DATA 1.2,5.2.1.83.9.15.3.68.6.16, I2 ,

226 PRINT"PLARSON'S R FOR-TEST A AND TEST C*

20 K1 = (S7-51°55/5)/SQR((S2-5112/5)*(56-5512/%))

240 RI-INTOO00°RT+ $)/1000

25 PRINT R = "Rl

260 PRINT PRINT*PEARSON'S K FOR TEST B AND TEST C*

270 R2 =(SK 83°85/5)/SQR((S4-8312/5)--"<~5512/5))

200 K2 INT(R2* 1000+ $)/ 1000

290 PRINT* R2,» " R2 : ~

300 PRINT PRIRT-SUZPOSE YOU FORMED A NLW SCORE, SAY X, 3Y”

310 PRINISPOOLING THE SCORES IN TEST A WITII TIIE SCORES IN TEST B*
32 PRINI"PRESS <ENTIR> 10 CONTINUE™INPUT §

JIWCISPRINI“LEST AAND TISTC  TEST B AND TESTC”

340 FRINTIADB)R1L,TA24) R2

350 PRINT PRINT*TI ST X WILL BE FORM:D LIKE: x-(a),u«)a

360 PRINT*WIAT W IGHTING ,HOULD BE t ™

370 PRINVTABOY)HE R TIFRE

380 PRINT PRINT=1 00K AT THE TWO CORRELATION (.OEFFICIENTS AND”
390 PRINT*SUGGE ST A WEIGHTING, THF COMPUTER WILL FORM TEST X”
400 PRINTAND COMPUTL: PLARSON'S R FOR TEST X AND TEST C.°

410 PRINT PRINT PRFSS <ENTER> Toz(.()NTINUE INPUT §

420 C1S PRINT"RI
410 PRINT RIR2
440 PRINT INPUT"ENTLR WLIGHING FOR TEST A" Wi
450 INPUTI N1 LR WLIGHING -OR TLST 8" W2
460 CI-0C2 0CIn0
A0TOR I-110
40 T=WIA  +W2*B()
£0 T(h=T
goo CIs(.'HT('2-('2+T‘T:CJ-CJ+T’C(J):NEXTJ
10
520 RIB(CJ SS‘CI/S)/SQR((CZ-CI /5)’(56—8512/3))
$30 PRINT"YOU TRIED X = (WA + ;W2 )B" PRINT
$40 PRINTTLST A".TAB(16). "TESTB" TAB(32).“TEST X";TAB{48)TEST C*
550 FOR J=ITOS:PRINTA(}).B(3).T().CUy NEXT)
560 R3=INT(R3*1000+.5)/1000
570 PRINT.PRINTR L.E2,R)

380 PRINT PRINT"IS THERE A BETTER CORRELATION WITH A DIFFERENT WEIOHTING?”

$90 GOTO 440

N
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{Continued from page 690)

tions that are different from ;other versions of
BASIC.

1. CLS—<clears the screen

2. RND(X)-returns a random number 1o XifXis~' ~

greater than |
3. PRINT@-prints at a position on the screen. The
positions are 0-1023 '

The programs are aritten in an “endless loop™

166

%

style. The user is required to depress the BREAK key.

This style was chosen over the more conventional -
END statement or the escape to END question for

two reasons:

1. The END statement required the author to antia-
pate the number of attempts a particular user ‘
would need. This varied 100 often to be practical. (
2. The escape question would normally appear-at the
end of the use:’s sample selection or weighti
The students in the statistics class made too many
typing errors to risk an additional user input. Fur-
ther. the escape question tends to break the train of
thought when the students are concentrating on
the output of the computer. *

154 ;
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By DAVID C. JOHNSON’

University of London
London, England SW6 4HR

RONALD E. ANDERSON

University of Minnesota |,
Saint Paul, MN 55113

THOMAS P. HANSEN
and DANIEL I KILACSEMN
Minnesota Educational Computing Consortium
Saint Paul, MW §5113

The May 1978 Mathematics Teacher in-
cludes an importan: posiiion statement re-
garding “Computers in the Classroom”
(prepared by the Instructional Affairs’

_ Committee and approved by the NCTM
Board of Directors) which states that  *
an essential outcome of come;‘npom'ry education is
computer literacy. Every student should have first-
hand experiences with both the capabilitics and the
limitations of computers through contemporary appli-

cations. Although the study of computers is 1n-
trinsically valuable. educators should also develop an

awareness of the advantages of computers both in in- -

terdisciplinary problem solvmg and as an msu'uc-
tional aid.

Whereas such a stdtement reflects.a com-
mendable concern for implementihg some-
thing calied computcr literacy, it pmvndes
little guidance in explicating what this area.
of study should include. The National
Council of Supervisors of Mathematics, in

their 1977 position paper on basic mathe-
matical skills (Feb. 1978 MT), do an ex-
cellent job of describing the many impor-
tant components of school mathematics.
Their statements of rationale pay particular
attention to the fact that “the availability of
computers and calculators demand a rede-

-

* awareness of computer uses and limitations.

o

fining of the priorities for basic mathemati-
cal skills.” They go on to include computer
literacy as one of ten basic skill areas:

It is important for all citizens to understand what
computers can and cannot do. Students should be
aware of the many uses of computers in society, such

as their use in teaching/learning. financial transac-
nons and information storage and retrieval. The

ey el sque ** currouqﬂ-!\n computers i ic A-ﬂu'ku\g and

can put persons with no understanding of computérs
at a disadvantage. The increasing use of computers by
government, industry and business demands an

It is clear that the mathematics education
profession is advocating that some sori of
computer literacy experience should be
provided for all pupils. (Note that many
others, outside the field of mathematics
education, are also callirg for action in this
_area: e.g., see the paper by Molnar {1978},
which speaks to the importance of educa-—. . _
tion regarding computers and their im-
pact.) However, we need to go beyond

“these general‘statements and be more ex-

plicit jn our statements of possible com-

ponents (experiences) and desired out-
comes (objectives).
1The National Science Foundation, ¢ ‘
through its Research in Science Education
program, has awarded a grant to the Spe-
cial Projects Division of the Minnesota Ed-
ucational Computing Consortium (MECC)

-

“ to explore the impact of precollege educa-

This report is based on research supported by the
National Science Foundation under Grant No.
SED77-18658. Any opinions. findings. conclusions, or
recommendations expressed (herein) are those of the
suthors and do not necessarily reflect the views of the
National Science Foundation.

S

Reprinted by permission from Mathematics Teacher

tional programs designed to increase com-
puter literacy. and the effects of human-
computer interaction within the context of
instructional computing environments. The
MECC Computer Literacy Study (May
1979 MT ) is concerned with such questions
as the following: (1) What is the impact on
student knowledge, attitudes, and skills of
various approaches to the development of

\ H

For information on iwo computer literacy programs,
see “New Programs" in this issue.—~—Ed.

91-96; February 1980.
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computer literacy? and (2) What impact
does using a computer as part of the in-
structional process in science education
have on student attitudes and-beliefs about
computers? An important initial phase of
the study was to search the available litera-
ture (articles, curriculum materials. tests,
and so on) and attempt to pull together the
various views espoused, explicit and im-
plicit, into some coherent set of statements
that reflects what is implied by the phrase

__ computer awareness or computer literacy.

If one peruses the literature in this area.

it soon becomes apparent that different au-
. thors place priorities on very different as-
pects of computing. On one extreme 'we

< find the emphasis placed on knowledge and

concepts related to hardware and program-
ming, and at the other the emphasis is on
an awareness of applications and issues.
This is not to say that the literature can be
easily divided 1iiio two disjoint sets, as most
authors espouse some combination of these
ideas. Whereas most authors (including
those developing course outlines at the
school level) identify the material to be in-
cluded, explicitly or implicitly, they gener-
ally indicate their recommendations for ex-
clusion through omission. Thus it is often

" "difficult o ascertain whether there is really

a debate regarding topics or if the curricu-
lum recommendations merely reflect .inter-
ests and local concerns. However. since the
views appear to be so diverse. the project
clected to develop a conceptual framework
that attempted to incorporate as much as
possible the views of all. That is, the result-
ing description should describe compuier
literacy or awareness in its broadest sense.
This flexible, general approach is a some-
what less absolute view. and it was felt that
such an approach would enable us to assess
student knowledge and attitudes across a
wide range of possible topics as well as
focus on particular aspects of hardware.
software, application,, and issues. In addi-
tion, such an approach should provide a
basis for further discussion regarding the
priority that might be given to particular
aspects of computing.

As a first step, information on a wide

170
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range of courses was collected (in the -

United States and in Great Britain)
through "pcrsonal contacts. responses to
requests for information that appeared in
various journals, and communications with

_the institutions cited in the "HumRRO ex-

emplary institutions” book (Human Re-
sources Research  Organization,
1977). (More complete information on
courses and materials is available in the fi-
nal report of the project.) One indication of
the extensive nature of this “‘collection
phase” is the fact that responses in the form
of course descriptions,” course objectives.
curriculum guides, or evaluation in-
struments were received from about fifty
school districts throughout the country.
Whereas many of these were similar. there
were sufficient differences (both with the
outlines and other text sources) to justify

"the earlier decision to attempt to explicate

N

the concept in a broad sense and nor at-
tempt to survey common practice or report
on the set of common recommendations.
In addition to course descriptions. nearly
2000 test items relating to computers were
collected, judged for quality, and cate-
gorized. The course descriptions and test
items were then used to develop a rather
comprehensive list of the topics and objec-
tives covered in the courses. These were
grouped under six main headings: Hard-

‘ware .(H): Programming and Algorithms

(P); Software and Data Processing (S). Ap-
plications (A): Impact (I}: and Attitudes.
Values, and Motivation (V). The first five
headings deal with cognitive outcomes and
the sixth is concerned with attitudes. or the
affective domain. The list of objectives was
subjected to many revisions and then circu-
lated to twelve “outside experts” represent-
ing the professional societies. industry. and
education, for reactions and validation. On
the basis of feedback from these individ-
uals. the list was revised once more and the
current version is presented in this paper.
Before moving to the actual statements it
is important to provide some information
about format of the lists. The objectives are
really informational objectives. Whereas
some are stated rather specifically, explic-




itly designating a desired outcome, for the
most part they are not behavioral but rep-
resent guides‘for the construction of test
items. Since subsequent research wiil in-
volve groups of students in schools, there

was also a feed to try to reduce the set to
T—

Some:smaller subset that could be assessed
in a reasonable-perod_of time. Thus the
listing contains a number of starred_state-

ments; these are referred to as “core objec- -
_ tives” and as such represent the set to be

used in the research. In general, the outside
reviewers suggested that, whereas the core
,was appropriate for the research task, there
is a need to extend this set, as most of the
statements so designated are only represen-

“tative of the lower levels of cognitivé -skills -

‘and understandings. Thus the reader
should not attach the idea of “minimum
competency™ to this core“set, but rather
recognize that this is only minimal for de-
scribing what might be called computer
awareness under the condition that the
subsequent assessment would be manage-
able within the constraints imposed, by the
large-scale study. ' :

Computer Literacy Objectives—
Oo_gnitivc

Hardware (Hy

*H.1.1 Identify the five major components
of a computer: input cquipment,
memory unit, control unit, arith-
metic unit, output equipment. .

*H.1.2 Identify the basic operation of a

. computer system: input ‘of data or

information, processing of data or

information, output of data or in-
formation. .

*H.1.3 Distinguish between hardware and
- _ software.

* Denotes core objectives.

8. Note :hat the coding is H—Hardware, P—Programming
and Algorithms. S--Software and Data Processing. A—Ap-
plications. and I—Impact. Also. for each statement the first
digit after the letter refers 10 a cognitive level—1 indicaung a
low level. generally a skill or knowledge of facts, and 2 stand-
ing for & higher level of understanding. requiring some analy-
sis and/or synthests. The final digit 15 merely a count of items
withins cach level. Whereas no prionity is intended with the fi
na! digit, there has been an attempt 10 place the ideas in some
sort of logical sequence.
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*H.1.4 Jdentify how a person can access a
computer: for example,

1. via a keyboard terminal
a. at site of computer
b. at any distance via telephone
lines C .
. via punched or marked cards
3. via other magnetic media (tape,
diskette)
T
*H.1.5 Recognize-the rapid growth of com-
puter hardware sincé the-1940s.

2

*H.2.1 Determine that the basic com-

ponents function as an inter-
connected system under the control
of a stored program developed by a,
person. ‘

*H.2.2 Compare computer processing and _

storage capabilities to the human
- brain, listing some general similar-
ities and differences.

Programming and Algorithms (P)

Note: The student should Le able to ac-
complish objectives 1.2-2.5 when the al-
gorithm is expressed as a set of English lan-,
guage instructions and is in the form of a
computer program.

P.l. Recognizeé the definition of “al-
gorithm.”. :

*P.1.2 Follow and give the correct output
for a simple algorithm. - '

*p.1.3 Given a simple algorithm, explain
what it accomplishes (i.c., interpret
and generalize).

* *p2,1 Modify a simple algorithm to ac-

complish a new, but related, task.
P.2.2 Detect logic crrors in an algorithm.
P.2.3 Correct errors in an improperly
functioning algorithm.  *
P.2.4 Develop an algorithm for solving a
specific problem.
P.2.5 Develop an algorithm that can be
«..d to solve a\;scl of similar prob-
lems. ! ’

y

Software and Data Processing (S)
S.1.1 Identify the fact that we communi-




bt

cate with computers through a bi-
pary code. -

S.1.2 Identify the need for data to be or- .

- ganized if it is t0 be useful.
S.1.3 Identify the fact that information is
data that has been given meaning.

S.14 Identify the fact that data is a
" goded mechanism for communica-

*

ton. ]
S.1.5 Identify the fact.that communica-
tion is the transmission of informa-
[ ‘ tion via coded messages.
*S.1.6 Identify the fact that data process-
ing involves the transformation of
- data_by means of a set of pre-
defined rules—-
*S.1.7 Recognize that a computer needs
instructions to operate.

*S.1.8 Recognize that a computer gets in-
structions from a program written
in a programming language.

*S.1.9 Recognize that a computer is ca-
pable of storing a program and
data.

*S.1.10 Recognize that computers process
data by searcling, sorting, delet-
ing, updating, summarizing, mov-
ing, and so on.

*S2.1 Select an appropriate attribute for ’

ordering of data for a particular
task.
$.22 Design an elementary data struc-
ture for a given application (that
is, provide order for the data).
S.2.3 Design an elementary coding sys-
tem for a given application.

Applications (A)

*A.1.1 Recognize specific uses of comput-
ers in some of the following fields:
a. medicine
b. law enforcement
c. education
d. engineering
¢. business
f. transportation
g. military defense systems
h. weather prediction

1. recreation

j- government
k. the library
L creative arts

A.1.2 Fdentify the fact that there are many
programming languages suitable
for a particular application for

‘ business or science.

*A.1.3 Recognize that the following activi-
ties are among the major types of
applications of the computer:

a. information storage and re-
trieval ] ’

b, simulation and modeling

¢. process control—decision-mak-
ing .

d. computation

e. data-processing

*A.1.4 Recognize that computers are gen-
erally good at information-process-

ing tasks that benefit from the fol-
lowing;

-

a. speed
b. accuracy
c. repetition
*A.1.5 Reacognize that some limiting con-
siderations for using computers are
* as follows:
a. cost -°
b. software availability
c. storage capacity
*A.1.6 Recognize the basic features of a
computerized information system.

*A.2.1 Determine how computers can assist
the consumer.

"*A.2.2 Determine how computers can assist

in a decision-making process.
A.2.3 Assess the feasibility of potential
axippiications. .

.A.2.4 fevelop a new application.

Impacl/ )]
*L.1.i/ Distinguish among the following

. careers:
a. keypuncher/keyoperator




*L.1.2

*L13
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*LLS

LL6

*L1.7

*L1.8

“c *L19

*L1.11

b. computer operator

€. computer programmer
d. systems analyst

e. co_mputcr‘scicntjst

Recogmize that computers are used
to commit a wide variety of serious

crimes, especially stealing money

and stcaung information. — -~
Recognize that identification codes
(numbers) and passwords are a pri-
mary means for restricting the use
of computer systems, computer
programs, and data files.

Recognize that procedures for de-
tecting computer-based crimes are
not well developed.

Identify some advantages or disad-

vantages of a data base containing -

personal information on a large
number of people (e.g., the list
might include value for research
and potential for privacy invasion).
Recognize several regulatory proce-
dures; for example, privilege to re-
view one’s own file and restrictions
on the use of universal personal
identifiers that hclp to insure the
integrity of pcrsonal data files. ~
Recognize that most “privacy prob-
lems” are charactéristic of large in-
formation files whether or not they
are computerized.

Recognize that computerization
both increases and dccrcases em-
ployment.

Recognize that computerization
both personalizes and imperson-

alizes' pracedures in fields such as .

education.

*1.1.10 Recognize that computerization can

lead to. both greater independence’
and dependence on one’s tools.

Recognize that, whereas computers
do not have the mental capagity.
that humans do, through tech-’
niques such -as artificial in-
telligence, computers_have been
"able to modify their own instruc-

-

tion set and do many of the infor-
mation-processing tasks that hu-
“mans do.

*1.1.12 Recognize that alleged “computer

mistakes” are usually mistakes

made by people.

*1.2.1 Plan a strategy for tracing and cor-
recting a computer-related error,
such as a billing error.

1.2.2 . Explain how computers make pub-
e surveillance more feasible.
*1.23 Recogmze that even though a per-
*  son does not go near a compute:,
he or she is affected indirectly be-
cause the society is different in
' many sectors as a consequerice of
computerization.
1.2.4 Explain how computers. can be
" used to effect the distribution and
use of economic and political
power.

-‘Computer Literacy Objectives——
Affective

Attitude, Values, and Motivation (V)

*V.1 Does not feel fear, anxiety, or in-
timidation from computer experi-
ences.

*V.2 Feels confidént about his or her abil-
ity to use and control computérs.

*V.3 Values efficient .information process-
ing prayided that it does not neglect
accuracy, the protection of individual
rights, and social needs. )

*V.4 Values computerization of routine

tasks so long as it frees people to en-

gage in other activities and is not
done as an end in itself.

"*V.5 Values increased communication and
availability of information made pgs-
sible through computer use provided
that it does not violate personal rights
to privacy and accuracy. of personal
data.

V.6 Values economic benefits of comput-
erization for a society.

b. The codmg scheme V.-V, is merely for recordirg
purposes and 13 not jntended 10 coavey any pnorities or hier-
archy.

H




V.7 Enjoys and desires work or play with
computers, especially compmcr-as-
sisted leaming.

V.8 Describes past experiences with com-
puters with positive-affect words, like
fun, exciting, challenging, and so-on.

V.9 Given an opportunity, spends some

) free time using a computer.

Summary

Theulists of objectives in the previous
__ section could- use further description. in
pamcular, note that A.2.1 and A.2.2 speak

¢o the notion of ncuchna the consumer or

in decision making. In their phrasing, these
objectives tend to suggest the positive as-
pects of computing. Of course, they must
also include aspects of the hmuauons of the
machine, in particular those aspects of de-
cision making that r-~late to ethical and
moral considerations. ,

* One further point deserves mention here.
Whereas the objectives are intended to pro-
vide a broad perspective, there is one area
that has been omitted. This is the detail of
carly history (e.g., Babbage and Hollerith).
This was a conscious decision based on dis-
cussions among the investigators and input
from the review panel and other knowl-
edgeable persons. This is not to suggest that
the topic is not interesting or motivating,
but rather that it reflects the bias that :uch
knowledge is not really functional or jre-
requisite to an understanding of the other
areas.

The lists of objectives in the previous
sections are quite extensive and, of course,
complete coverage is probably not feasible
within any single course and even less fea-
sible as an addition to the school mathe-
matics ¢Grriculum. However, if we view

computer literacy in this broad sense. it is’

now appropriate to “‘pick and choose,” if

you will, and allocate selected activities/ex- -

periences to various points in ghe total
school curriculum, including mathematics.
It may also be desirable to allocate a por-
tion of some, year to a course called com-
puter awareness or computer literacy and
include those objectives that require some
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teasonable time for stidy. Such decision

making is a job for those most suited for

the task-—the teachers in the school. .
Whereas these lists should pronde a

" basis for such decisions; much more re-

mains to be done. In particular. it should
be noted that the language used in many of
the statements will probably need to be
rephrased if it is to be communicated to
younger students. Also. the objectives will
need to be translated into a form appropri-
ate for assessment. The research project has
developed items for those statements desig-
nated as core and will disseminate informa-
tion about the tests in the near future. Of
course, the assessment is most appropriate
for determining the effectiveness of a given
computer literacy curriculum, and at pres-
ent, this is a relatively undeveloped area.
Reaction to the ojectives is welcome: the
statements are all open to revision and you
may feel we have omitted some imnortant
points. The project has a'so produced other
reports including further descriptive infor-
mation on the research:; the results of a
statewide (Minnesota) survey of all second-
ary school science, mathematics. and busi-
ness teachers (as well as selected teachers in
other disciplines); and summaries of se-
lected references. Questions should be di--
rected to Computer Literacy Study. Minne-
sota Educational Computing Consortium,

2530 Broadway Drive, St. Paul, MN 55113.

f
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COMPUTER LITERACY— o

WHAT SHOULD IT BE? ~

Ju— ‘_..

By ARTHUR LUEHRMANN

Computer Literacy
146§ Grizzly Peak Bivd.
Moley, CA’M’IOB

The way th.uLgs are is not necessarily the
way they should be.
“The February 1980 Mathematics Teacher

contains a significant report of research
conductad for ihp National, Qmpnt_‘p Foun-

_ese (B tad P40 Lt 21

dation By Johnson etal ( 1979) at the Min-
nesota Educauonal Computing Con-
sortium (MECC) The report, titled
“Computer thcracy——-What Is It?” has al-
ready gcncratcd a great deal of discussion

_among teachers and others attempting to’
understand the| place of computing in the

precollege curriculum. At the 1980 annual
meeting of the Natxonal Council of Teach-
ers of Mathemancs one of the best attended
sessions was a rcport on this project by one
of the MECC authors (Klassen).

The goal of defining computer literacy is
of great importance.’Much hangs on it. If
the pubhc decides that the subject is worth
teaching in its schools, then it faces an
"equipment bill of about $1 billion in the
United Statcs alone. It faces the additional
costs of curnculum development, of
teacher. training, and of the assessment of
student achievement. It is obvious that the
way computer litéracy is defined will have a
profound effect on the public’s Wdhngness
to 'support the teaching of‘computmg in
their schools.

“The specific concern that prompts the
present article is that many readers of the

February MT report are making the mis- -

take of seizing upon the list of sixty-three
items (whxch occupies half of the report
and is given the boldface title “Computer
Literacy Objectives™) and interpreting the
list as providing an objective measure of
what computer literacy should be.

Whereas the organization and physical
appearance of the MT article may invite
such an interpretation, and, indeed, the au-
thots may wish us to do so, they also_ex-
plam clearly that their methodology in
diawing up the list results in little more
than an empirically gathcrc\ d collection of
the educational objectives actually found in
existing computer courses in 1978-79.

andace chanld ant hhnh“‘l‘e that
194444

Thus, TSaaLIs saduil nlt Gialius

there is any moral unpcrauvc to teach

those things. In the latter half of this com-
munication I will go a step farther than the
MECC authors. I will argue that fully four-
fifths of these empirically discovered objec-
tives should not be used in any significant
definition of computer Iileracy More of that
later.

This observed tcndcncy to ,mtcrprct thc
MECC list of objectives as authoritative,
imperative, or official is aggravated by the
publication and dissemination of an im-

-pressive 1979 MECC document bearing the

title “Minnesotd Computer Literacy and
Awareness Assessment,” and a credit line
indicating NSF grant support. Who could

blame a casual reader for inferring that,
these fifty-three multiple-chaice content

questions provide an authoritative, official
definition of what a course in computing

should be aimed at? “At last,” one can al-

most hear the harried teacher say, ;'now I
can see .whether I’'m teaching the right

Eduipr‘nent could cost
- $1 billion in the.
United States.

things.” In fact, as I will soon argue, the
teacher who is teaching toward that test in-
strument is teaching the wrong things.

I do not take the MECC authors to task

Reprinted by permission from Mathematics Teacher 74 . 682-686;.

December 1981.
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for this public confusion dbout the results  Algorithms”~section fall into this category

of their project, but only call atiention to  along with three “of the thirteen in “Soft- -

what a course in computing should be. The  fifty-one objectives involve nothing more .
MECC test instrument was developed pur-  than student acceptance: of hearsay knowl-

poscly to find out what students are learn- edge about computing, such as might be ac-

ing in today’s computcr literacy: courses. It  quired from a book or from being told by

is very good for such empiri¢al work and  the teacher. .

certainly should not be interpreted as set- This category of knowledge. the lowest

ting a standard or a goal. Furthermore. the  in Plato’s hierarchy, is essentially verbal.

’

authors of the MT article precede the list of  Its acquisition involves the student tainly

- i objectives with this extremely forthright ca- . in encoding words and remembering them

veat: - LT . when an appropriate stimulus is presented.

o « . Most of.the statements [designated as core objectives) It is qualitatively different from the knowl-

are only representative of the lower levels of cognitive edge that comes,from experience: doing
skills and understandings. Thus the reader should not  writing, doing mathematics, or doing com-

4 attach the idea of “minimum competéncy™ to this corc
set, but rather recognize that ‘this is only minimal for puting.
describing what might ‘be called computer aware- “Consider the following objective (H 1. l
N mess... (p.93) ‘ in the MECC list): “Identify the five major .
.o . components of a ‘computer: input equip-
What Is Wrong wit‘h the ;ment, memory unit, control unit. arithmetic .

MECC Objectives? unit, output equipment” (Johnson et al., p. .
. Lmlc or nothing, if we use them to de-  93). This “core” objective is.tested for by
- fine computer awareness, as the authors  item 68 in the MECC assessment in-
warn us that we should. Evervthing, if they strument: “In addition to input and output

are to define computer literacy. _equipment, computers contain’: for which =

The argument proceeds.by analogy. Lit-  the correct response is “memory units,con-
' ‘ eracy in a language mears the™ability to
. read and write, that is. to do something ‘
KR with language, not merely to recognize that Computer literacy is the
language is composed of words, to identifv ability to do computing.
a letter of the alphabet, or to be aware of
the pervasive role of language in society. )
- Literacy in mathematics means the ability  trol units, arithmetic units” (MECC 1979).
to add numbers, solve equations, and S0 Clearly, the student who has read and
on—t0 do mathematics, not merely to rec-  memorized the classical definition of a
ognize that numbers are written as sets of  computer will ace this item.

»

« digits or to identify a fraction by its appear- Yet we should all be worried by the fact
. ance or to be aware of the vocational ad-  that months and years can go by in the life
vantages of being able to do mathematics. of a professional computer scientist without

By analogy, computer literacy must also ‘any need to remember or make use of or
mean the ability to do computing. and not  even reflect on the fact that somewhere in
merely to recognize; identify, or be aware  the bowels of 2 computer lies an arithmetic
of alleged facts about'computing. The basic  unit and somewhere els¢ (a few microns
flaw in attempting to apply the MECC ob- . away on the same chip, nowzdays) lies a
jectives as a standard for what should be  control unit, and that they are. logically at
taught in a computer-literacy course is that  least, distinct. He or she could create an en-
of the sixty-three objectives given, only tire managemsnt information system or an
twelve require that the student be able to airline reservations system or a numerical
do anything. (Significantly, eight of the  analysis package without ever calling on
nine objectives in the “Programming and  that picce of knowledge or putung it to use.

%
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Except for a few who work at or near the
hardware level, people who do computing
rarely exercise that bit of textbook knowl-
edge. -

An even greater cause of worry about the
misuse of objectives like this'one comes out
of direct cxperience in working with thou-
sands of children and adults who.are ac-
-»  tively gaining firsthand experience in using
computers. After only a few hours of such

Performance objectives
- are needed.

/

laboratory experience, they know enough
to-score near the top on the handfui of test

items based on the dozen MECC objectives °

requiring ‘that the student be able to do
computing. Yet these same students do not
have the foggiest idea about what an arith-
metic unit is or a control unit is or what the
difference is. (They do know about input,
output, and processing, by the way, because
they experience these things and have a
need for wofds t§ describe them.)
knowledge qualitatively. superior to that“of
the hearers about computing. The Chinese
_proverb says it well: “I hear, and I forget. I
see, and I.remember. I do, and I under-

stand.” The doers should not be punished

by misapplication of tests.and objectives
derived from classés where hearsay knowl-
edge is the principal commodity.

I have criticized one objective at length,
but the same criticism applies to four-fifths

of the rest in the MECC list. Here are a few -

representative ones, taken only from the
starred “core objectives” in thc February
1980 MT article: .

H.1.5 Recognize the rapid growth of com:
" puter hardware since the 1940s.
S.1.6 Identify the fact that data processing

involves the transformation of data
by means of a sct of predefined

, rules. )
A.14 Recognize that computers are gencr-
ally good at information-processing
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Yet these doers of computing have a’

tasks that benefit from the following:
a) speed, b) accuracy, c) repetition.

A.2.1 Determine how computers can assist
the consumer.

I.1.8 Recognize that computerization both
increases and decreases employ-
. ment. '

Altogether there are eleven objectives
that start with® “Identify,” twenty-one that
starvwith “Recognize,” and three that start
with “Determine.” In every such case little
real change occurs if these verbs are re-
placed by the single word Remembér. In-
deed. the corrcspbndmg test items on the
MECC assessment instrument require only
that the student; remember the “nght” set
of words that goes with that objective.

To make clear the contrast between
hearsay knowledge and knowledge that
comes out of practice, consider the very
different flavor of the following simpling of

-the twelve MECC objectives not in the

hearsay category:

P.1.2 Follow and give correct output for a
simple algorithm. _

P.2.1 Modify a simple algorithm to accom-
plish a new, but related, task.

P.2.4 Dévelop an algorithm for solving a
specific problém.

S.2.2 Design an elementary data structure
for a given application.

Any course in computer literacy ought tq_

spend four-fifths or more of its umc and ef-
fort on performance objectives, such as the
ones in this latter group. Going further,, R |
would argue that it is mtenectually un-

- proper to inculcate beliefs and values about

a subject that do not arise out of the stu-
dent’s direct experience with the content of
that subject. If I were writing about mathe-
matics or reading and writing, there would
be little disagreement about this point.
Readers of this journal, for example, would
be properly outraged if they were asked to
spend four out of five days working on

- Johnny’s and’ Janey's beliefs and values

about. the s bjcct of mathematics and {0

spend the other day teaching them to do
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mathematics. However much we want our
students to reme¢mber facts about, and feel
good about, mathematics, we know that
these beliefs and values will be short lived
if our students go out into the world with
poor ability to do mathematics.

The Nub of the Problem

Wherrone remembers the goals and the
methodology of the MECC study, it is easy
to see how that particular list of objectives
came into being. The study’s goal was to
assess ‘‘the impact on student knowledge,
attitudes, and skills of various approaches
to computer literacy.” The authors tell us-_
that they defined computer literacy as
broadly as possiblé, so_as not to leave out-
any approach. Their methodology, then,
was to collect “course descriptions, course
objectives, curriculum guides (and) evalaa-
tion instruments” from existing courses of
study in various schonl districts. The result-
ing list of objectives is a somewhat cleaned-
up union set of all the stated and implied

> objectives of actual courses then in place.

o (1978-79). "

A

for each’ thirty-stucent computer class in
the school. This arrangement allows haif
the students to work in pairs in the com-
puter lab while the other half is receiving
instruction in the classroom. Alternate-day
rotation between lab and classroom gives”
each student pair about thirty hours of
computer practice. The next plateau occurs
at about fifteen computers per school. Lo-
gistics are the same as with eight comput-
.15, but each student can work alone in the
b,

I am familiar with several schools that
have reached the first plateau and one en-
tire school district nearby that is well on
the way to reaching the second plateau. Al-
though this situation is attainable and adds
less than 1 percent :0 the operating cost of
a school, nevertheless, it is still an unusual
one to find today. Declining equipment
cost and increasing public awareness of the
intellectual and vocational value of being a
literate computer user will in due course
enable schools to do the job property.

~____Conclusions _

That constraining phrase, *“then in
place,” is the nub of the problem that arises
if one is looking for guidance as to what
should be taught in a computer literacy

. course today and in the decade ahead.

The vzst majority of precollege comput-
ing courses then in place were woefully un-
prepared to give students significant practi-
cal experience. Thirty students in a class
often had combined access to a single som-
puter or terminal for an hour a day. In an
entire semester each student might experi-
ence perhaps only two hours of direct use.
No one she*'id be surprised, then, that 80
t6 90 percent of the student’s time in such a
course was spent reading and listening to

“textbook information about computers and

computing. Teachers have to teach some-
thing, after all, and the MECC study shows
clearly that what they were teachifig for the
most part was computer awareness.

It sakes much more eauipment to be able
to turn out literate users of computing. The
first equipment plateau is reached at about
eight computers. available an hour a day
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The MECC Comguter Literacy Study
should not be misinterpreted. It gives us g
well-documented snapshot of the staie of
computer education as actually practiced in
1978~79. What we see in the snapshot is a
classroom with a lct of reading and listen-
ing, a little seeing, and hardly any doing.

The MECC study gives little guidance,
however, as to what the learning objectives
of a precollege computer literacy course
should be. Readers of the study deserve
blame if they turn to the published MECC
objective list as an ideal or if they use the
MECC assessment instrument as a -stan-
dard test of anything more than elementary
computer awareness. '

A significant challenge rentfdins, then: to
define learner objectives for a course that
will turn out literate doers of computing,
and then to embody those objéctives in a
practical curriculum intended for wide
adoption. .

Although I have well-formed ideas about
how to o that, the pages of this journal are
probably not an appropriate place to pre-
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B A Fuiiext provided by R

f
sent subjective judgments. Suffice it to say
that such a curriculum will put primary
emphasis on the direct interaction between
the computer and the student, with 2

leamner goal of mastering wholly new ana-

. lytic, expressive, and problcm-solvmg
skills.

Computing belongs as a regular school
subject for the same reason that reading,
writing, and mathematics are there. Each
one gives the student a basic inteliectual
tool with wide areas of application. Each

. one gives the student a distinctive means of
thinking about and representing a problem,
of writing his or her though's down, of
studying and criticiz'ag the thoughts of
others, and of rethinking and revising
ideas, whether they are embodied in a
paragraph of English, a set of mathemati-
cal equations, or a computer program. Stu-
dents need practice and instruction in all
these basic modes of exprcss'u':g and c¢com-

- munijcating-ideas—Mere- awareness—of these
* modes is not worth the time it takcs away

from teaching the creative and disciplined
use of these fundamental intcliectual tools.
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IN DEFENSE OF A COMPREHENSIVE VIEW
OF COMPUTER LITERACY—
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In Arthur Luehrmann’s critique of our
Februiry 1950 Mathematics Teacher article
on computer- literacy objectives, he pro-
poses a rather narrow view of lit~-1cy. De-
spite his claim, there are two (not just one)
generally accepted definitions of literacy.
One is, as he points out, the ability to com-

" municate, for example, reading and writ- -

ing; and the other, which he neglects, is the
state of being informed, “cultured,” and
well versed. Whereas the first is a subset of
the second, both definitions are commonly
used. It is not surpricing that the term com-

puter literacy shares the semantic ambiguity
c-f language literacy. The narrow view is
that computer literacy is simply a matter of
doing things with a computer. The compre-
hensive view is that computer literacy is an
understanding of computers that enables
ong to evaluate computer applications as
well as to do things with them.

The comprehensive view of computer lit-
eracy’ is consistent with the long-estab-

The authors wish to thank Catherine Dunnagan
who gave helpful comments on versions of this paper.

This article was prepared with the support of Na-
tional Science Foundation-Grant No. SED-18987.
Any opinions, findings, conclusions, or recommenda-
tion expressed are those of the authors and do not
pecessarily reflect the views of the National Science

Foundation or anyone else.

lished tradition of scientific literacy and re-
lated formulations such as technological
literacy, geographic literacy, and economic
literacy, to name, only a few. Scientific lit-
eracy is generally defined as the knowledge
about science that the layperson ngeds to
function effectively. Scientific literacy re-
fers not only to learning scientific facts but
also to one’s understanding of the implica-
tions of science and science-society issues.
Thus it is not surprising that we often see
computer literacy equated with *‘computers
and society” and courses on-the social role
of computers.

The comprehensive view of computcr lit-
eracy is also consistent with the current rec-
ommendations or the National Council of
Teachers of Mathematics (1980). In An

Agenda for Action, they recommend that “a

computer literacy course. familiarizing the

student with the role and impact of the.
computer, should be a part of the general

education of every student.” This ‘iew of
computer literacy is also in accord with the
literature on the conceptualization of com-
puter literacy. For example, Moursund
(1976), Rawitsch (1978), and Watt (1980)
all define computer literacy in a broad,
comprehensive fashion.

Luechrmann’s attempt to define computer
literacy as simply “doing computing” and
his attempt to belittle knowledge of com-
puter systems by calling it “*hearsay knowl-
edge” neglect the semantic ancestry of the
term and close the door on a broader un-
derstanding of computer technology. There
are very good reasons for people to e able
both to communicate with computers and
to be knowledgeable about them.

In defining computer literacy it is useful
to distinguish it from computer science.
The most succinet distinction is to say that
computer literacy is that part of vomputer

Reprinted by permission from Mathematics Teacher 74 687-690;

December 1981.
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science that everyone should know or be
able to do. Both language literacy and sci-
entific literacy are commonly defined in
terms of the layperson and his or her needs.
Likewise, computer literacy should be

thought of as the knowledge and skills the

average citizen needs to know (or do) about
computers. This obviously implies that stu-
denrs should be taught more than simply
how to operate or program a machine.
They also need to know how computers
can be productiv 2ly used and what the con-
sequences of computerization are. Thus
matters of computer literacy should be
taught not only in the math2matics depart-
ment but in science and social studies
courses as well.

Qrdinary people, old and young alike,
have very real, practical needs for com-
puter understanding. For example, people
need to know enough about computer sys-
tems so as not to be intimidated by a com-
puterized billing error; people aeed to
know whether to acquire computer equip-
ment for home or work; people need to

_learn how to evaluate when computer ap-

phcanons are helpful and when«they are
harmful; and so forth. Some of these things
can be learned as a byproduct of learning
to write simple BASIC programs, but most
of this type of useful knowledge cannot be
learned that way. Indeed we would argue
that most of what every ordinary citizen
needs to know about computers will not be
learned from learning how to program.

instructional Objectives

In evaluating the instructional objectives
we proposed for computer literacy, Luehr-
mann claims that they are merely a de-

scription of what was taught two years ago. .

In fact, whereas we do not claim that they

* represent a perfect set. our list of objectives

is much more. The list is an evolving con-
ceptual structure and smorgasbord for
computer literacy. The objectives obviously
deserve ongoing refinement and updating.
In the absence of any alternative sets of ob-
jectives, we constructed a list that would
guide us in the construction of test items.
This accounts for the omission of “doing”

%

or computer usage objectives. More re-
cently these objectives have been revised to
take into account changing te¢hnology and
broader concerns. The revised objectives,
which appear in Anderson and Klassen
(1981), are designed to serve as a concep-
tual framework for curriculum planning
and development. Whereas we were origi-
nally constrained by what might be mea-
sured with paper-and-pencil tests, recent
efforts allow us to add behavioral or psy-
chomotor activities that are central to
learning about computers but are hard to
measure except by observanon

Objectives are generally specified at one
of three different levels: (1) broad learning
goals, (2) informational objectives or de-
sired learning outcomes, or (3) behavioral
objectives for a specific activity. We have
aimed our objectives at the second level,
the informational level, but many of these
objectives can be used as behavioral objec-
tives as well. Because we intended that the
objectives would be worthwhile guides for
curriculum materials, we used behavioral

language including such terms as recognize
and identify. Whereas some’ of the objec-

tives deal with factual information that re-
quires the exercise of recall, many of these
objectives require a thorough understand-
ing of concepts and principles. In most in-
stances it would be much more appropriate
to substitute the word understanding for
recognize. Consequently, Luerhmann’s
claim that most of the objectives are wivial
is totally unfounded.

Furthermore, we know from both our

- Minnesota assessment of computer literacy

(Anderson, Krohn, and Sandman, 1980)
and the National Assessment (Carpenter et
al. 1980) that a great maany junior and sen-
ior high school students have basic mis-
conceptions about computers. Even among
those who have taken computer program-
ming classes we find a great deal of misin-
formation. Luerhmann suggests that our
objectives and assqciated test items are of
such a low level that after a few hours of
hands-on computer experience a typical
student would be able to “score near the

top.” The empirical facts are just the oppo-




site. From the 1978 National Assessment of
Mathematics we know that many, if not
most, of the students who had taken one se-
mester of computer programming still
could not read a simple flowchart (Ander-
son 1980). In addition, the study, which
tested some fifty computer classes (Klassen
et al. 1930), found that the average per-
formance on programming items was only
30 percent correct for those students who
completed courses where the instructor
taught computer programming. A more
thorough statistical analysis in this study
revealed that the number of hours allo-
cated for hands-on computer activities did

Computer literacy is
not the same as
computer science.

pot contribute as much to computer learn-
ing as other factors such as the type of
course and time Spent on computer topics
(Klassen et al. 1980).

__ Luerhmann proposes that low-level
knowledge about computers should be
called computer awareness. We would ac-
cept such a definition but only if computer
literacy is defined to include computer
awareness as well as compuier program-
ming and. other essential ingredients of
~omputer literacy. We believe that com-
- puter literacy must encompass the follow-
ing domains:

programming and algorithms '
skills in computer usage

hardware and software principles
major uses and application principles
limitations of computers

personal and social impacts

relevant values and attitudes®

From this taxonomy, which is based on our
revised list of objectives for computer liter-
acy, it is obvious that we place a significant
and strong empbhasis on the experiential as-
pects of computing as well as on those
areas traditionally called compute: aware-
ness. The comprehensive approach to com-

puter literacy require< that all_these do-
mains be included « 1 curriculum dealing
with computer literacy. We do not assume
that each domain or each objective will be
given equal weight, as Leurhmann seems to
assume. We certainly hope that those using
our objectives will “pick and cheoose” from
the entire list and will weigh those that they
choose. '

Negative Aspects of
the Narrow View

The narrow view claims that specific
types of computer experience and com-
puter. programming are the only important
components of computer literacy. Those
persons who promote this philosophy may
unwittingly promotc mindless or meaning-"
less “doing™ as well as constructive experi-
ences. Without adequate direction, stu-
dents who are actively “doing computing”~
may in fact be learning nonrigorous proce-
dural thinking, acquiring misconceptions,
and otherwise wasting valuable instruction
time. The typical “doing computing” “ap-
proach consists of teaching students to
write a few programs in the BASIC lan-

“guage. As Papert (1980) points out, this

learning strategy often results in student
learning that stifies creativity and sup-
presses motivation. It can also lead to awk-
ward or poor algorithmic thinking.

The development of the BASIC lan-
guage during the 1960s paved the way for
the narrow view of computer literacy.
BASIC was offered as the single instruc-
tional language that everyone was encour-
aged to learn. The numerous developments
in computer science and computer tech-
niques during the 1970s have made this
view obsolete. Now there is a wide diversity
of computer systems’in place, and few of
them require the user to write simple
BASIC programs. If téachers now focus on

_using microcomputers to replicate the ap-

proach of the 1960s, students will not be
fully prepared to deal with the many large,
complex systems of the 1980s, either as pro-
grammers Or as end users.

Another serious problcm is that in the
brief time of a typical course, the student
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can learn very little about problem solving
and algorithms. It is also difficuit to pro-
vide experiences’ with a variety of lan-
guages and a variety of computing systems.
Students may complete typical instruction
with limited and inefficient strategies for

Hands-on computer
experience does not

° guarantee computer
literacy. :

problemn solving. And if the student only
learns about a single computer system, he
or she can develop a narrow conception of
computing and may have difficulty in
transferring those skills to other computer
environments.

The solution is not to provide students
with computing experiences per se. The so-
Iution is to provide students with construc-
tive computer experiences. It is not easy to
provide these constructive experiences. The
design of instruction is not an easy task.
Thosethat argue-for-the-narrow-view- of
computer literacy should step telling us
what computer literacy should not"be and
advise-us on the specifics of what it should
be. We need many minds to work on what
contributes to the “ability to do comput-
ing” and how we can move toward an on-
going state of computer literacy in schools
across the country.
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EXPLAINING COMPUTER RELATEDD
CONCEPTS & TERMINCLOGY

Harold W. Lawson, Jr.

Have you.ever tried to explain computer systems to someone
who knows nothing or very little about them? Where do you
start? Do you first explain the binary number system. Boolean
algebra and/or computer logic? Perhaps you begin by showing
the classic CPU, memory. I/0 block diagram and explain
each of these constituents. including stored programs. instruction
sets, etc. Maybe vou skip all of these low level details and
explain flowcharting and/or some relatively simple high level

rogramming language such as Basic.

Regardless of where you begin. you soon recognize that
although you may be somewhat successful (after sufficient
effort), tlie person being taught has no idea about computer
systems and computing as a whole and many questions remain
about the “miracle of the computer.” On the other hand. it
seems, on the surface. to be difficult to give a complete
picture of computer systems right from the beginning.

After several years of experience with a “'process oriented”
approach we can remove the doubt and say that it is indeed
possible (and desirable) to introduce computer systems concepts
and terminology right from the beginning in an integrated

_manner. This approach has resulted in the book Understanding

Computer Systems* and the purpose of this afticle is to

present the basic concepts used in this approach. As with all_

endeavours of this nature. the success depends upon proper
structuring of the presentation. The approach used is highly
pictorial, and terminology is introduced bit-by-bit in a logical
fashion. Each chapter finishes with a summary. work list and
problems. The entire vocabulary introduced is presented at
the end in the form of a glossary. .

But enough about the structure of the book —let us consider
the approach.

Introducing Processes and Systems
“People learn best when new concepts are presented in terms
of what they already know.” R

‘The process is used as the LCD (lowest common denominator)
for explaining the constituents of computer systems. At the
beginning, it is necessary to select widely known model processes
thatcan be used as the basis for association with computer
system related processes. To show the example used. we
take, as a verbatim quotation from the book, the introductory
model process descriptions.

*Understanding Computer Systems. by Harold W. Lawson.
Ir., Lawson Publishing Company. Linkoping. Sweden, ISBN
91-7372-333-9. Similar versions of this paper have been previously
published in Computer Age. issuc 13. 1960 under the title
“Understandinig Computer Systems™ and 1n Mikrodatorn. Nr.
2, 1981 under the title “At Forklara Begrepp Inom
Datatekniken.” Permission of these publishers has been granted
for publication in Creative Computing.

Hirold W. Lawson. Jr.. Linkoping University. S-5n1 83 Linkoping.
Sweden.

We begin this education process with a pictorial representation
of a well-known real life process (task) faced by many of us.

A Process.

Note that the concept of process and rask are synonymous
and thus in al! further references to process related concepis.
the word “task” may also be used.

Let us now consider this real life process of washing the
dishes in the form of an abstraction which shows the major
elements of this process as follows:

DIRTY DISHES —“! v -

""“Eé‘,‘}ﬁ‘;g"‘“__.; " wWASH |—+CLEAN DISHES |

DISH CLOTH —

A Process Abstraction.

Dirty dishes, detergent. water and dish cloth are process
inputs and clean dishes are a process output. The process
which we have shown here can only be carried out. executed. _
when we apply a processor.

A Processor.
Let us complement this single process by introducing a

second process, thus creating a system of cooperating pro-
14 [ ol
g phe OB
& S

cesses.
. -—, .
=% . L‘

A Secom; Process

Reprinted by permission from Creative Computing 7: 92-102‘; October 1981.
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| ) In explaining control. we consider signals to processes and

, related control fnechanisms. For example. the following
illustrates the producer-consumer relationship of asynchronous
control where the dishrack provides a perfect example of a
buffer. The concept of synchronous control is then explained
and compared to asynchronous control.

PRODECING : STORAGS CORBUMING
socese R0CES PROCEES
og 10 ¥ og 1O P
- e rrmmmmemsf  pememe==
v a1 o
Minenguenpunntiry I R of
BUSFSE FELL SUFPRR EMPTY

X X

Asynchronous Control of Multi-processors

In finalizing the control notions. an important analogy is
made by presenting the process as a machine with lights
(corresponding to states) and pushbuttons as illustrated in the

following illustration:
+ ’ . FROCRES ¢ MACRINE
DaTr DISHES—of G —AEADT 1N PROCTIS ERBOR -
T aTaA— e 14 ° 0 ° ¢
Diss cLOTH wasy  (DVEE® 1 >
s ros DAL — SmimiaL erant axsxr] ;
. il < ;
A Process as a Machine Controlled by Push-buttons
- e ___Programming Concepts o

After considering the WASH process as a pushbiitton”
machine, it is a ssmple matter to presgnt the logic of a process
as the following state transition diagram.

INITIAL

\ errer fixed

RESET

State Transition Diagram

To introduce the basics of programming. a modified form
of “dimensional flowcharting™ as described by Witty! is utilized.
This flowcharting format is accomplished by using three
drawing directions for indicating sequences of actions. selection
of alternative actions and refinement of larger actions into a
sequence of actions. These rules are easily remembered from

this picture.

¢ SELECTION

REPINEMENT
SEQUENCE )
. ® Flowchart Conventions .
N 1o . 186
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. These concepis are motivated step-by-step but we can see
as the final example. the use of the rules for program-like
representation of the WASH process with declarations and
procedures appears in Figure 1. )

sesemte DS .
i\l-uun-o s
vewee

‘\nﬂmmm'«-.—mmnw.—mw“—u

!
1
|
{ ™5 sassemman
H Lum._—s“nmm
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rasemonss v .
: \-m saent
N, i !
: T Sates Bmssars 720000 !
, i SmYY SerssmNY m—,—um-m- 3
i et sus cors ! WIPUT SI PR0NE STY SeuSED
sant v sen

Dameore girm v s

- AND BVE WATHR

+ o

- Figure 1. Flowchart of Process Logic

Your intuition should help in understanding this representation

with the knowledge that the ground symbol () is used to

show a sequence termination and the asterisk (*) is used to* R
’ show the end of a repetitive sequence controlled by a conditicn

at the beginning of the sequence.

At this point, enough has been presented indirectly about
. > computing concepts in the context of the model processes
that the student has achieved a basic understanding and
confidence. The scope of the material described thus far has
rmitted the following vocabulary of concepts and terms to

- be understood-{presented- here in groupings of individual

chapters). R e
process (task) process inputs ’
L process outputs ~ process execution

processor system

cooperating processes uni-processor

concurrent processes multi-processors

interrupt ° process pricrity

. process creation ] process suspension
: process initiation process termination .

process resumption processor assignment

parallel processes -

data information

information processing system data processing system

alphabet storage i

port input port )
_output port storage process

transmission channels

simplex duplex

half-duplex

control asynchronous control

speed {time) independent synchronous control

speed (time) dependent signals

‘ : ercor conditions buffer

system constraints producing procuss

consuming process resource

monitor process resource ownership

clock signal process initialization

process (mackine) state .

Ty “Dimensional Flowcharting.” Rovert W. Witty, Software
Praciice and Experience, Vol. 7. 553-584 (1977).
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Note: Implicit in this description is the definition of a svstem

* as a collection of interrelated processes.
We can continue the general abstraction of this system of
cooperating processes by introducing an abstraction for the
second process, namely the drying process. in the following

manner: .
sy ﬂ.‘;
wass CLBAN PISURS
'Atll__‘ I _ oY e PRIED PINNS
a An Abstraction of a System of Cooperating Processes

If the processes are to be carried out by a single processor,
uni-processor, then this single processor must be assigned to
both the WASH and the DRY process as indicated in the

following picture.
mlﬂ:.
wirm— Ll - __‘ Ry [—=DRIED Drexns

A Uni-processor

Note that if the dishrack becomes full during WASH
exedltion, then the single uni-processor must be alternated
between the execution of the processes WASH and DRY.
Alternatively, we could assign a processor to each process.
that is, the processes are executed concurrently (at the same
time) by multi-processors.

SR o ——— e - -
—
waTER— wasm CLEAX DISENS ony |—eoRIED Dremme
oME TOWIL—
Mulii-processors

5 During execution of a process by a processor. let us say the
WASH process, the processor could be interrupted by a high
priority process such as the following:

=y

[
77

o~

- -— —concepts-and-terminology. While the remaining descriptions._

-

In the case of a single uni-processor. the processor temporaniy
suspends the process it is currently executing and :nitiates
execution of the CHANGE process. After termination of the
CHANGE process. the processor returns to. resumes. execution

of the process that was suspended.

Alteratively, in the case of multi-processors. the processor
that acknowledges the interrupt (let us say the processor
serving the WASH process) could assign another processor
(the processor assigned to DRY or another available processori
to execute the CHANGE process parailel with the ongoing .
WASH and/or DRY processes as follows:

P —
A o1 wass e 17
B = DRY
R -
L - " ’
E
L
P
P
R
o
[+ LS
:
.: —"] cBHANGE —*
o . — ]
Cooperating Process
P g

At this point, we have introduced several importaat computer
related concepts in terms that all can understand. The flavor
of this example should fow be remembered as we browse
through, in a highlight fashion. the further presentation of

of the approach will be terse. you can certainly use your -
imagination to guess how the details of the approach are
presented in the book.

Data Flow and Control .

Having introduced the basic process and system concepts.
it is easy to build on the example to include data and controi
aspects. Data can be made analogous to objects processed by
the processes of our example leading to the following view
where the alphabet of objects is concretely declared. .

ALPHABKT OF DIsEis |(CUP, SAUCER, SALAD DISH. MRAT DISE}

PROM T0
C @& Y .
C2UNTER B —+ wam DISHRACK
E . eration of Process Related Objects (Data)

<& flow of objects within a process is explained in térms
of :lassical data processing steps: namely. input ttake object -
froim counter), process (wash object) and output tplace object
in dishrack). The transmission of objects between processes
(over channels), including “storage processes” is indicated ty

A High Priority Process the following, from which. for example. the explanations of
Consequently, a new process is created which we can represent terms such as simplex. half-duplex and full duplex are ¢asiy
abstractly as follows: ) developed.
’ BABY _.4 PROCESS CRANNSL sTORACE CHANNEL FROCERS
WET DIAPER —+ _+
CLEAN DIAPER—s] CHANGE —= DRY BABY L o T AT P A YT (N RN B, AL
POWDER —! | 4 .

An Abstraction of the New Process

ERI ' :

. -
Aruitoxt provided by Eic:
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Transmission of Objects (Data)Over Chunnels
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state transitions state transition diagram

finite state machine local storage

state indicators state variables o
sequence . selection

refinement program (algorithm)
flowcharts (flowdiagrams) repetitive sequence

declarations procedures

How many of us mastered so many concepts in so short a
period of time when we began. In classical approaches to
education (including self education) in this area. many of
these concepts are learned only after many hours. days.
weeks, months (dare we say years) of struggling with details.
It is not us..ommon that the details that have been learned
are then a deterrent to gaining a clear picture of these more
basic, general concepts. .

Introducing the Real Thing .

We now begin to consider. more concretely. the data
processed by computer systems by introducing the terminal
and the computer system in the following. now familiar.
framework. ~

[

MEMORY
[T
: o« : AR ARARNAD

\“ s CHANNEL 5 .
COMPUTER N o ‘TERMINAL
L
SYSTEM . PROCESS

Terminal Connection to a Compuiter System

© "I i§'easy to convince thestudent that-by-pushing buttons:-

a

data is transmitted across the channel and placed in a memory
where it is processed. and results are sent back for display on
the terminal screen. At this point. we still treat the computer
as a “black box.” The terminal process is used to transmit
data back and forth. - :

In making “data” a more concrete concept. the nature of
numbers of base 2 and 10-is presented including an easy-to-
comprehend algorithm for the process of converting a binary
number to a decimal number as indicated in Figure 2.

]

DIGIT POSITION VALUR

BINARY NUMBER—H

INITIAL~ =~ ¥]
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e sINARY TO v
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N
SINARY NUMBER, INTTLAL. STANT. DBCTMAL NUMRER
l‘l;‘fl vahiaLe
+ . 4
. I i PIOTT. POSITION BALYE, ACCTMULATED UK
POCEIVIDS
’\

—3DECIMAL NPMBER
ACCUMULATED 8UM .

N - ‘
: IS3T ommIon vaLYE 101 WRILS- 4 BINADY DIOFT EXIWTY
S5T ACCUWILATED SOW ! ‘INPRT WRLT LOW ONDER DIOFP
Tee 780K BINARY NOMERS
‘.
WELIIILY SIPIT WITH PORITION TALEE
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i
)
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]
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Figure 2. Binary to Decimal Conversion Process
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v After having mastered the WASH process,from the earlier
example, this process does'not in any way seem strange and
can be traced by following the dimepsional flowchart and
indicating resulting changes of the process stite variables
given within the process.

* Further details on electronic representation of signals.
precision of arithmetic data and the ASCIl character set are
casily introduced. Word processing systems and the represen-
wation of programs as text are foihowed by the presentation of
basic data structure concepts including arrays.

+ The More Conventional View
The stage has now been set to accept the computer system
as simply a collection of cooperating processes connected by
, channels as seen in the fcllowing picture.

' HEMERT asetsrans vo svrrsme
== = ==
3 . N
E - ! . .m‘
i__ i
T o, TCEWIRAL ' . poerea s, PEBIPNEBAL
oy T 808 2 IROCEMINECE 5o e ifa - L PESITRERAL
‘ . L 2T et “*"] contROLLER r“--" NNELS pemices

The Cooperating Processes of a Computer System

- These constituent parts and their general properties are now
< easy to introduce. In fact, the CPU viewed as a process is
eventually portrayed as follows:
X2

| sscisTERS 88ADY
‘:n = —.-T: ™ n‘::u nw-L‘W Data o0
A 09— 1 —
aEnORT ADORRSSe—s [ VT X o DATa ™
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4 ’ A CPU state transition diagram and CPU process dimensional

' flowchart provide an easy guide to understanding CPU
\ operation. A brand name independent simple instruction
repertoire and assembly program presentation then makes
- the point about concrete programs and their exec ution.
!

Memorles and Peripheral Devices
\ Memories of the core arid semiconductor type are presented

along with the structure of a flip/flop element as a process
with its related process dimensional flowchart as shown in”

Figure 3. ! .
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Figure 3. A Flip[Flop Process Description

Now that we are convinced that the process concept can
be used ds a>common denominator to explain both hardware

’ and software concepts. Storage and peripheral devices (tapes.’

disks. A/D and D/A converters. printers. etc.) are then described
in a rather com'entional manner..
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Digital Processes and Hardware Construction
Even the smallest of computer elements (gates) are presented
as processes'with related process logic as indicated in the

- following example. B}
A . A ——'J c
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\-
Tw GATE .
IN CASE OP—— A I8 1 AND B IS 1— OTHERWISE

C BXCOMES 1 C BECOMES 0

The principles of computer arithmetic are considered.
including the view of a binary adder in process form. The’
notions of combinational and sequential circuits are conveniently
introduced along with a basic explanation of clock signals
and timing.

These digital buildirig blocks and their eventual encapsulation
into integrated circuits. printed circuit boards and chassis are
easily described with this background. .

LS

Putting it All Together .
The process concept has enabled us to present basic computer

system concepis. the notion of programming and the compo-
sition of computer hardware. Putting this all together. we
then create the notion of “architecture.” starting with basic
delineation between hardware and software architecture as

follows.
« - mwa g — P - JEE U GUUGE . SN —_— -
) o0 00
APPLICATION SYSTEMS \
System Anslysts
. Application Programmers .
. DATA BASE SYSTEM
Data Base Programmers N
. N
&. "TWARE
LANGUAGE TRANSLATORS
Compiler Writers AIOBX‘{'!CTUBI
N -0
OPERATING AND FILE SYSTEMS -
System Programmars . 3
TARGET SYSTEM ARCHITECTURE ) ’
Machine Language Programmers
[}
_ MICRO ARCHITECTURE T
Microprogrammars
- \ BAlDWs\R!
COMPUTER CIRCUITS /
i Loge Designers ARCHITECTURE
INTEGRATED CIRCUITS .
Cireuit Designers
Solid State Physicists
/
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A further key concept. namely that of “processor-mémory

pairs” as illustrated in the following provides the keystone to

describing the various architectural levels.

MEMORY
/
PROGRAM PROCESSOR
- ’ * < '
<DATA // ‘
PROCESSOR-MEMORY x%un
o

The Basis for Constructing Programmed Processes
The architecture of the target system (programmer's machine

- language machine) ean then be descnbed abstractly as nested

pairs of processors and memeories as indicated in the follow-
ing.

4 e
TARGET STSTEM

MICHS ARCRITECTUAS

FROCIINOR

mecs
roowE r [ O '
' m?ﬂ_’_l—_ ,uu ] siowars | | vevviovreer:.

T ‘
a——

[ 4

»
.l
veoesan | mcao-f 1 ——: woew 11 Leconrnotzns I-—= 7
L oata [~ |7 (FReosAM T — 1 | = ; ig
. 2

I3
Architecture of the Target System T

This nesting is built upon to describe further the placement
and role of opgrating and file systems. language translatorss
utility systems, and data bases. and culminates in the following
view of the relationship between the application system ana
the lower level systems of cocperating processes. -
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Application Systeyts Architecture

Note: the dotted lines around the memory simply denote that
itis not a separate physical memory butis a program and data
representation in a common physical memory.
Further architectural concepts such 4s multi-port memories.
PMA channels and- common busses thighways} can bte
.introduced in a natural manner as architegtural alternatives.
Finally, the concepts of network architectures and relatea
terminology round off his brief (but comphehensive introduction
to the “core™ concepts and terminplogy of computer systems.

Experlence with the Approach

The approach described here has been tested and proved ~

to be successful for a variety of audiences. For those seek:nz
a starting point in learning about computer Systems (amateuss
and professionals to be) the approach permits an examipation
of the nature of the forest before examining the leaves of the
trees. As an appreciaion (computer literacy) vehicle the

[

«

approach has worked successfully fer journalists. pohiticians,
3
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and administrative and technical people. We have also been

. provides a step in the nght d:recnon e

successful in removing the fear of secretaries who are I¢aming
to word processing systems. Terminal operators of all
varieties would certainly benefit from the understanding
provided here. Thiey get an idea of where they fit into the
system that they are using and some idea of what is happening
in the computer.

The demystification of the computer is a must if we hope
to achieve any degree of harmony between technology and
the citizenry of the world. This approach which has been or
isin the process of being translated into a variety of languages e

/‘.

. Some Final'‘Comments

It is important to note that the approach is descnbed ina
completely product independent manner. therefore. the
approach can be used to complement the real details"of any
product, Teaching assistance materials. including visual aids.
are available and are quite useful for presenting the approach
to small as well as large groups. The approach is well suited to
being supported by animation and plans are being made to
provide and animated video tape and animation via software
for commonly available microcomputers.

Understanding Computer Systems can be ordered in single
copies by sending a check in US dollars for $15.251517.25 for
airmail) to LAWSON. Gustav Adolfsgatan 9. 382. 20. LlnkOpme
Sweden. Make checks payable to LAWSON. All other mquxres

O

---can be directed to-the-s2ne-address.
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CUPERTINO SCHOOL DISTRICT
| ~ DEVELOPS COMPUTER
"~ LITERACY CURRICULUM_

Cupertino Union Schooi District
103071 Vista Drive N
Cupertino, CA 95014
Carl W. Krause, Superintendent

gditor’s Note: As more microcomputers appear in schools. more school districts or education agencies find
themselves cadifying goals and objectives in their computer literacy curriculurm. TCT is pu Jlishing the Cupertino
Union Schoo!' District Computer Literacy Curriculum to promote the exchange of computer 2ducation goals and
>, objectives. TCT solicits submission of similar curriculum plans, suggestions, critiques of this cocument, and reac-

‘. tiors to TCT publishing such material. .
-0 The Cupertino Union School District and TCT grant permission to reprcuce all or part of “is document provid-
. H

- ed credit 15 given.

»

The Cupertino Union School District (K-8) has an grams for the gifted or handicapped). In 1981, the
average daily “attendance of 13,000 pupils. Althcugh school board allocated capttal expénditure funds to
the districtis in the heart of Silicon Valley, déveluping permit widespread piloting of the computer curriculum

~+~. and implementing a, computer literacy (awarenes$) during the 1981-1982 school year. Two junior high

curriculum has taken several years As ‘Bobiy Good-  schools will start the year with twelve microcomputers

son, Districs Computer Resource Specialist, says: > with dual floppy disk drives and one printer. Two

' o el microcomputers will be on a cart along with a 25-inch

o The success of a program e (s noduced . colormontor Eachclementry sehcol that pols 10

> : ’ . - e is selected will receive five microcomputers, one of

oped inservice program with wide participation that  (vich will be on a cart with a 25-inch color momttor.

’ glves teacl’:ers i.gCOd. togndatlon ' ;"‘"Id ”ﬁon' We  mplementation dates will be staggered in ordef that

¥ oa\yeerft?war;eii;rsl)s gr?cljn\:vo?lf:;siﬁ ::ggeasv? tt;inek";'é?s staff may finish sufficient training and have adequate

trict would have difficulty instituting such a program support as the program begiris. Most sr:hools plan to

as a complete package. People need to be trained house the microcomputers in their Tedna centers, but

and seady with an expiicit curriculum in hand if the zr;itgflans to use them in a Specific Skilis Learning

program is to be truly successful. : Next spring the district curriculum committee will

evaluate the computer literacy (awareness) curriculum

and its implementation by pilot schools. The super-

intendent wijll then be in a position to make further
recommendations to the board.

District personnel and parent'volunteers began work-
ing with microcomputers in 1977. Financial support
- . came from donations, small amounts from existing
budget accounts in schools,_and title monies (U.S.
government funds for special purposes such as pro-

S COMPUTER LITERACY CURRICULUM

. PHILOSOPHY & GOALS OF CUSD

‘ All stydents.will have an-opportunity to becom familiar with the operation of a microcomputer. They will be-
- come awaie of the widespreac use of computers in the world around them. They wili be aware of hoth the com-
puter’s capabilities and limitations.

-
~ N -

iRe'-,':rinted by pemisgfon from Computing Teacher 9: 27-34: September 1981.

>
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IMPLEMENTATION OF THE COMPUTER CURRICULUM

in grades 3-6, the use of a microcomputer will be part of the normal schcol activities. It will be available for use
in the classroom as part of the regular curniculum and by students for individual use. Most computer curriculum
objectives at this level can be met by routine classroom use.

. Ingrades 7-8, a specific course in Computer Awageness and Introouctory Programming will give students some
of the knowledge needed to make wise educationa’ choices in high school and eventual career choices. The com-
puter curriculum objectives can be met .n such a course and/or with the inclusion of computer related topics in
math, social studies and science classes. . »

This curriculum, a guide to the ideas students should have an opportunity to learn about computers, has been
prepared with the help of many people. \ithout the support ot the Board, administrative staif, teaching staff, and
interested members of our community, this curriculum would not be possible.

The principal writer was Bobby Goodson, with the assistance of Jenny Better, judy Chamberlin, Ron La Mar,
Barbara iMumma, Jerry Prizant, Richard Pugh and Cheryl Turner.

Syn:jbols used indicate the level at which given objectives and activities are introduced (1) and reviewed or rein-
forced (R).

)

IN SOCIAL STUDIES, STUDENTS WilLL:
K-3 4-6 7-8
1. Become familiar with a computer.

101 — Become familiar with a microcomputer through its use in the class- ] R R
room. .

102 — Use a prepared program in a microcomputer. r . R
103 — Describe the historical development of computing devices. 1 R

=l

104 — Tell about the history of Silicon Valley. !

' 2. Describe how computers affect our lives.

201{ — Explain ways computers affect our lives. ]

R
202 — List several ways that computers are used in everyday life. l R R
203 — Identify ways that computers are used to help consumers. 1 R
204 — lllustrate the importance of the cor~puter in modern_science ¢nd 1 R
industry.
205 — ldentify- career-fields related to éomputer development and use. 1 R
206 — State the value of computer skills for future employment. 1
207 — Define the term ‘‘data base.” E ]
208 — Describe some advantages and disadvantages of a data base of 1
personal information.
209 — Describe problems related to the “invasion of privacy.’’ 1
210 — Describe.ways in which computers are used to commit a wide variety |
of crimes and how these crimes are detected.

3. Describe how computers are used by social scientists.

301 — Describe how computers are used by sociologists and other scientists. ]
302 — Describe how computer simulations are used in problem solving | R '

situations.
303 — ldentify ways in which computers help make decisions.

304 — Explain hqw computer graphics are used in engineering, science, I’
arn, etc.
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305 — Explain how «.inputers are used as devices for gathering and process-
ing data.

306 — List several sampling techniques and statistical methods used in the-
social sciences.

- 307 — Describe computer applications such as those consisting of informa-
tion storage and retrieval, process control, aids to decision making, computa-
tion and data processing, simulation and modeling.

<

IN LANGUAGE ARTS, STUDENTS WILL:

4. Define and spell basic computer terms.
401 — Define {and spell) basic computer terms.
5. Tell about a person or an event that influenced the
historical development of computing devices.
501 — Tell about a person or an event that influenced the historicai
development of computing devices.
6. Describe how computers are used in
information and language related careers.
601 — Explain-the meaning of ‘‘word-processing.”
602 — Use a computer as a word-processor.

603 — Describe some of the ways computers are used in the information
and language related careers.

IN SCIENCE, STUDENTS WILL:

7. Define ‘““computer’” and ‘*program.”’
701 — Tell what a computer is and how it works.

702 — Pescribe the historical development of computing devices as related
to other scientific devices.

703 — Know the characteristics of each generation of computers.
704 — Differentiate among computers, calculators and electronic games
705 — Differentiate between analog and digital devices.

706 — Differentiate among micro-, mini-, and main frame computers 2 gnd
identify the five major components of any computer.

707 —_Deﬁne {and spell) basic computer terms.

708 _ Define software and-hardware and list two examples of each.
- 709 — Define ""computer program.”’
710 — Exp[ain why a computer needs a program to operate.

711 — Define "input” and “output’’ and give an example-of each.

712 — Recognize the relationship of a program, or mput tc the result,
or output. .

K-3 4-6 7-8
!
!
H
i R R
| R
|
A
|
! R R
| R
! R
|
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| R
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! R
! R
| R
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713 — Explain the basic operation of a computer system in-terms of the input
of data or information, the procéssing of data or information, and the output

of data or infgrmation.

]
714 — Evaluate output for reasonableness in terms of the problem to be
solved and the given input.

715 — Recognize the need for data to be organized to be useful.

716 — Describe how computers process data (searching, sorting, deleting,
updating, summarizing, moving, etc.).

717 — State what will happen if instructions are not properly stated in the
precise language for that computer.

718 — List at least three computer languages and identify the purposes
for which each is used.

719 — State that BASIC is one of the languages used most commonly by
microcomputers. . ~

720 — Explain the existence of several variations in BASIC.

8. Explain how computers are used by scientists.

801 — Describe the computer’s place in our growing understanding
of science. : ) ] .

802 — Show how a scientist would use a computer.

803 — Explain how computers are used in predicting, interpreiing and
evaluating data. - : ’

804 — Show that computers, are best suited to tasks that require speed,
accuracy and repeated operations.

805 — Describe situations which limit computer vse (cost, availability of soft-

ware and storage capacity).
806 — Identify common tasks which are NOT suited to cormnputer solution.

807 — Explain how computer models are used in testing and evaluating
hypotheses. .

‘
© 9, Use a computer to accomplish a simple task.
901 — List several fundamental BASIC statements and commands.

902 — Differentiate between random computer commands and computer
programs,

903 — State the difference between system comlmands and program
statements.

904 — Use a prepared program in a microcomputer.

905 — Create a simple program\ in BASIC,

IN MATHEMATICS, STUDENTS WilL:

10. Exnlain that the design and operation of a computer
is based on standard logic patterns.

" 1001 — Explain that a computer design is based on standard logic patterns.

<
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1002 — State the meaning of ‘“algorithm.”’
1003 — Explain what is being accomplished by a given algorithm.
1004 — Follow and give correct output for a given algorithm.
1005 — Describe the standard flow chart symbols.
11. Demonstrate how a compu:ter could be used to
accomplish logical or arithmetic tasks.
1101 — Read and explain a flow chart. .
1102 — Draw a flow chart to represent a solution to a proposed problem.
1103 — Order specific steps in the solution of a problem.

1104 — Translate mathematical relations and functions into a computer
program. »

1105 — Use the éomputer to accomplish a mathematical task.

1106 — Evaluate output for reasonableness in terms of the problem to be
solved and the given input.

1107 ~ State that data must be organized to be useful.

1108 — Describe the techniques computers use to prc 23s data such as
searching, sorting, deleting, updating, summarizing, moving.

1109 — List several ways computers are used to process statistical data.

1110 — Explain the statement: *"Computer mistakes’” are mistakes made
by people.

If these activities are combined into a single Junior High Computer Literacy
elective, they could be regrouped with the following objectives:

"

THE STUDENT WILL: -

A. Develop a vocabufary of common computer terms.
401 (707) — Define (and spéll) basic computer terms.
705 — Differentiate hetween analog and digital devices.
701 - Tell what a computer is ar.d how it works.,
704 — Differentiatev among computers, calculators and electronic games.

706 — Differentiate among micro-, mini-, and main frame computers and
identify the five major components of any computer.

. 708 — Define software and hardware and list two examples of each.
711 — Define “input’”” and “‘output’’ and give an example of each.
207 — Define the term ‘“data base.”

8. Be familiar with the history of computing devices
~ . and the development of computers.
103 — Describe the historical development of computing devices.

702 ~- Describe the historical development of computing devices as related
to other scientific devices.
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501 — Tell about a person or an event that influenced the historical
development of computing devices.

104 — Tell about the history of Silicon Valley.

703 — List the characteristics of each generation of computers.

C. Develop an understanding9 of how computers are used.
201 — Explain ways computers affect our lives. - :
202 — List several ways that computers are used in everyday Itfe
203 — Identify ways that computers are 0sed 10 help consumers.

302 — Describe how computer simulations are used in problem solving

SItuatlons i

303 — Identify ways in Wthh computers help make decisions.

803 — Explam how computers are used in predicting, mterpretmg and
évaluating data.

‘807 — Explam how computer models are used in testing and evaluating

hypotheses -

1109 — List several ways computers are used to process statistical data.

306 — List several sampling techniques and statistical methods used in
the social sciences.

601 — Fxplain the meaning of "‘word processing.”’

801 — Describe the computer’s place in our growing understanding
of science.

204 - Hlustrate the importance of the computer in modern science
and industry.

'304 — Explain how computer graphics are used in engmeenng, science,

arnt, etc.

305 — Explain how computers are used as devices for gathering and
processmg gata.

307 — Describe computer applications such as those consisting of mforma-
tion storage and retrieval, process centrol, aids to decision making, compu-
tation and data processing, simulation and modeling,

-»

804 — Show that computers are best suited to tasks that require speed
accuracy and repeated operations.

805 — Describe situations which limit compiter use (cost, availability of
softwate and storage capacity).

2
208 — Describe some advantages and disadvantages of a data base of
personal information.

202 — Describe problems. related to the “invasion of ;Sriva_cy.”

210 — Describe ways in which computers are used to commit < wide variety
of crimes and how these crimes are detected.

D. Learn about computer-feiated career opportunities.

205 — Identify career fields related to computer development and use.

ld e, ~ .
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206 — State the value of computer skills for future employrﬁent. |
301 — Describe how éomputers are used by sociologists and other social |
scientists.
603 — Descnbe some of the ways computers are used in the information |
- and language related careers. '
. 802 — Show how a scientist would use a computer. ' !
E. Gaiﬁ a non-technical understanding of how computers function. -

1001 — Explain that a computer désign is based on standard logic patterns. |
713 — Explain the basic operation of a computer system in terms of the input . {

of data or information, the processing of data or information, and the output
of data or information.

716 — Describe how computers process data (searching, sorting, deleting, ) 1
updating, summarizing, moving, etc.).
1108 — Describe the techniques computers use to process data such as |
searching, sorting, deleting, updating, summarizing, moving.
715 (1107) — Recognize the need for data to be organized to be uscful. I.
1110 — Explain the statement: “"Computer mistakes’’ are mistakes made I
_ by people.
° 806 — Identify common tasks which are NOT suited to computer solution. } R R
~ 709 — Define “‘computer program.”’ 1 .R
710 — Explain why a computer needs a program to operate. I R
712 — Recognize the relationship of a program, or input, to the result, | R
.or output. -
714 (1106) — Evaluate output as to its reasonableness in terms of the problem N R
to be solved and the given input. -
717 — State what will happen if instructions are not properly statad in: the I R
precise language for that computer.
718 - List at least three computer languages and identify the purposes for ) |
which each is used.
719 — State that BASIC is one of the languages used most commonly by i R B
microcomputers. . :
720 — Explain the existence of several variations in BASIC. ' 1 R
: F. Learn to use a computer. N
101 — Become familiar with a microcomputer through its use in the ! R R
. classroom.

102 (904) — Use a prepared program in a microcomputer. . | R
1002 — State the. meaning of “algorithm.” |
1003 — Explain what is being accomplis]wed by a given algorithm. |
1004 — Follow and give correct output for a given algorithm. |

g 1005 — Describe the standard flow chart symbols. - | | R
1101 — Reatl and explain a flow chart. ) t




v

1102 — Draw a flow chart to represent a solution to a proposed problem.
1103 — Order specific steps in the solution of a problem.
901 — List several fundamental BASIC statements and commands.

902 — Differentiate between random computer commands and computer
programs.

903 — State the difference between system commands and program
statements.

905 — Create a simple program in BASIC.
1105 — Use the computer to accomplish a mathematical task.

1104°— Translate mathematical relations and functions into a computer
program.

602 — Use a computer as a word-processor. - .
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Computer Simulations in Mathematics

By Janice L. Flake

Janice L. Flake. Associate Professor of Mathematics
Education, Florida State University, Tallahassee

Computer simulations can be used to make
thleory more relevant. Such simulations can
he used for making either: (1) mathematical
theory relevant for the youngster, or (2)
edncational theory relevant for the teacher
education student.

Background

A simulation .is,a working analogy of a
situation, such as a ‘“‘flight simulator’ or
‘‘classroom simulator.”” Through gaming
activities, the student can manipulate the
énvironraent to study the interactions of

" various conditions. The idea is to put the
student in the middle of a simulated problem:
situation; through manipulating the situa-
tion, he is to solve the problem.

Such activities should provide fc- the
following stages of learning: (1) exploratory
investigations. 12) formulating of principles,
and (3) operating from principles. Thus, the
same simulation could be used to: (1)
introduce the theory, (2) provide for avenues
for discovery of principles, and (3) provide
for reinforcement of the principles.

There are four basic components in a
simulation game: (1) Tan abstracton of an
environment—this i1s the model, perhaps
consisting of a system of models, {2) a series
of rules for how the model behaves, or
models interact—this is the simulation, (3)
the freedoin for the student to interact with
the ‘'simulation to develop his or her own
strategies—this is the game, and (4)
“reality”’ feedback—this is what makes it
come ‘‘alive.”

A simulati’n study begins with the
development of a custin-made model. Such
a maodel may employ a systems approach,
where a system is a group of interde-
pendent elements acting together to ac-

m—

Reprinted by permission frum Contemporary Educatiom 47: 44-48; February -1975.

Educaﬁon

) L)

complish a predetermined purpose. For ex-
ample, several educational theories, e.g.,
teaching strategies and questioning be-
haviors, can be written into the model.

Rationale

Too often theory is given primarily in the
abstract form, and students fail to see its
relevance. Simulations can put the student
into a concrete example of the theory. As the
student manipulates the simulated environ-
ment, he should gain insights as to how the
theory relates.

Having the facilities of an interactive
computer system aliows for immediate
feedback. Hence, the student can explore a
number »of possibilities within a matter of a
few minutes. Through his exploratory inves-
tigations, he can find some patierns for
behavior of the model. Those patterns can
help him to become avure of relationships.

In addition, the 'students tend to regard
what they are doing as play. There are a
number of strong supporters of the merits of

. play in schools (Piaget, 1951: Bruner, 1975;

Caplan ard Caplan, 1974).

Simulations can also be used to study
individual behaviors. The way the student
manipulatés the environment can give a
great deal of information concerning his or
her thinking patterns. This information can
unobtrusively be stored and used to study
the child’s thinking patterns. and thus can

lead to research. .

Examples .

The {ollowing examples show how such
simulations could be used throughout the
curriculutn. Most of the examples relate to a
computer system siuch as PLATO: This

.
1)
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system offers the facilities of graphics and
animated motion. The visual effects add
much to the dynamics of the situation, i.e.,
they bring much ‘‘action’’ to the student.
Ad' itional features that can be used for litsle
children are audio facilities, and the touch
panel, where the child simply touches the
screen and the location is recorded.

Example 1

At present I am working with some 6
year olds, trying to teach them the concept of

-3

linear measure. The literature suggests that
youngsters of this age have difficulty
focusing on lengths. Thus, we are using

Cuisenaire rods tc
students are trying to find who can make the
longest road. This activity has kept the
children's attention for several days.

A simulation of this activity can be
developed for PLATO, where. again, the
children are trying to make the longest road,
or perhaps help a playmate cross a ravine to
get to a friend. (See Figure 1.)

[y

"'build roads."”

204
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Within certain constraints, e.g., tie
limits, the student is to decide which replicas
of rods he wishes to use. Using the touch
panel, the chiid can **move’’ the rods to form
his road. If the youngster is successful in
getting the road built, then the playmate
runs across the road to his friend. If the
youngster uses an ineffective strategy and
does not build an appropriate road, then the
road tumbles into the ravine.

Through manipulation of this game, the
youngster will find an algonthm of putting
the longest rods first, then the next longest
rods, and so on. Hence, giving the youngster
the freedom to manipulate the game can
allow him to go through the various stages of
learning and build his own strategies.

The use of the simulated activity is more
dynamic than the straight use of the blocks
because. (1) more controls can be set and a
greater amount of constraints can be placed,
(2) the youngster can receive dyriamic
feedback, which, hopefully, will keep his or
her attention, and (3) accurate records of the
child’s attempts can be kept. Through the,
study of such records one can tell if the child
is improving his sirategy.

Such a program could be used with first or -
second graders. The use of the actual rods, -

though, should be a prerequisite to the-uge of

. this program. Piaget (1956} warns that it is

- -

the’ actual®"*astion’” of manipulating’ the
blocks that helps build concepts. |

|
I

Example 2 ! : O
.The number line is rich with possibilities
for simulations. Threugh taking trips, basic
operations of addition, subtraction, multipli-
cation, and division can be evolved. One can
first build ideas of these basic operations
with whole numbers, then carry the same
idea through to the treatment of rational

"numbers.

PLATO has the additional feature that a

*trail can be left showing the path that has

been traveled. Thus, if one were traveling
from 3 to 5, the student could observe the
motion of an object travelirg from 3 to 5 with
a traiE{i, showing the troveled path. The
same program can also be written at 2 more
abstract level where no trail is left.
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The use of the number line can allow for a
much more consistent introduction to frac-
tional numbers than is normally done. Once
the child has the unit iteration idea, he can
trcat a number such as 3% as 3 one-
fourth units. This would avoid the often
confusing use of many different interpre-
tations of fractional numbers, such as parts
out of parts, parts of a whole, and so on.

Caution should be used, however, in using
the numberxine prematurely. The number
line is based upon perception. P°LATO is a
highly perceptual instrument, Piaget (1956)
warns that a child’s conception of space does
not evolve out of perceptions alone. The child
needs considerable actions on objects (ma-
nipulative aids) to build concepts. The
extremely important concept of linear mea-
sure should be a prerequisite for using the
number line to illustrate operations on
numbers. I would not want to use the
number line with children until they have

»internalized the coordination of the reference
system.

Example 3

$*Rate-distance-time”’ problems often give
youngsters difficulty. Consider a simulation
of two cars driving on two intersecting
highways. Allow the child to manipulate
various values tor rate, distance, and time to
see if he or she can make the cars avoid.each
other or crash into each other. The &ction
then is actually carried out. To accentuate
the effects of one of the variables, one might
give fixed values to two of them, andvary the
values of the other.

This program could be used at the fourth
grade level or higher. ‘

Example 4

The ideas of quadratic, functions can be
“ilustrated through the use of motion
properties. For example, supposc one shoots
a basket with a basketball. One can vary the
initial velocity and initial angle until he finds
tpe right combination.

Such a problem could be used at the
exploratory investigation stage of learning to
introduce a unit on quadratic functions. Then
it couid be used to help build properties of
quadratic functions. Later, it could be used
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to reinforce the properties, where the
student is operating at the applicatién of
principles level of learning.

Example 5

The ideas off line refléctions can be
illustrated through a simulated billiards
game. The student is to ‘‘shoot’ a target
“from a starting location, and reflect his
simulated ball off of each of the walls. (See

Figure 2.) E .

i

The student s¢es the action carried out,

and can try over again and again until he has
developed a strategy that works. The
starting position and the target can be
randomly placed,|allowing more fle&ibility.
Example 6 T

Calculus is ri
where the use of] graphics is_very effective.
Problems of maximum/migimum .motion,
instantaneous velocity, and area/volume are
a few of the possibilities that could’ be
simulated very easily.- vt -

Example 7 L
An example of educational thoory being

made relevant for teacher education interns
can be in the f?‘rm of interns ‘‘teaching’’

/ ¢
/

Figure 2.

h.with mary applications

simulated classes..The intern is to ‘‘ask’’ the
class a question, get a simulated response,
react to that response, ‘‘ask’’ a next
question, and so on. Through such question-
ing behaviors, the intern 15 to “‘teach’’ the:

" class a principle or concept.
~

Such a simulation is described in more
detail in other publicationg (Flake, 1973,
1971). In this simulation” articulation of
several educational models was employed:
(1) lesson planning, (2) Henderson’s moves
and strategies of teaching mathematics

(Henderson, 1963, 19G7), (3) Wills’ approach = =

to problem solving (Wills, 1967), (4) a
simplified*learning theory, and (5) various

questioning behaviors. /

Additional Examples

" The mathematical examples given above
ate rather simple; far more complex prob-
lems can be.created. For example, the stu‘ly
of ecology, economics, traffic probtems using

* linear programming techniques, agricultural’

planning, and flight patterns all /lend
themselves to interesting simulationg. The
educational simulation briefly mentigned in
.example 7 is an example of a far more
.complex simulation, where some com-
poner,its of a- classroom intera zion are
studi?d. ’7
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Capable secondary level students can
become quite proficient in programming,
and delight in creating their own simula-
tions. This is dn cxcellent experience for
them, because in order to create a simulated
environment, one must carefully understand
the environment that is to be simulated.

_ Summary i

Some principles have been given;concern-
ing how one could use simulations 25 a part
of the mathematics curriculum! &ome
examples have been given. These are only a
few of the many possible examples that could
be g've{x. It is hoped that simulations can
give rr evance, motivation, and a deeper
qnde’rs}mding of the theory, as well as lead
to usg{i I research,

’

Let'$ get some *“‘action’’ into mathematics,
and hélp mathematics become more rele-
vant!

-~
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PROBABILITY SIMULATION

IN MIDDLE SCHOOL

-3

By GLENDA LAPPAN

and M. J. WINTER
Michigan State University
East Lansing, M! 48824

By middle-school age many students

- have formed notions about.the likelihood

of an event happening. These notions are
often incorrect, and yet firmly fixed in the
minds of students. Studying probability as

- a 5=t of theoretical rules, in our experience,

is very unlikely to change any of these pre-
conceived notions. Teaching probability
through concrete experiments holds much
more promise.

We will describe two “situations” that
are real to students—basketball and cereal
box prizes. Each situation is simulated by a
spinner against an appropriate back-
ground. The “realness” of the physical situ-
ation is not lost; exclamations of “Boy, you
missed again,” and “Now you’ve only got
to get the princess,” show the involven:ent
of the students as they experiment and
gather data. '

Basketball Simulation

‘The situation simulated here (proposed
Ly the Mathematics-Methods Project at In-
diana University) is the one-and-one foul
shot situation in basketball. A player mak-
ing a free throw from the foul line is given
a second shot only if on the first, the ball
goes through the hoop. Thus, a basketbali
player shooting a one-and-one can score 0,
1, or 2 points.

Suppose we know a player shoots withe
60 percent accuracy. We ask students, “In
25 trips to the foul line for a one-and-one,
how many times will the player get 2
points, 1 point, and 0 points?” Most stu-
dents guess that 1 point will happen more
often than either 0 points or 2 points.

The attempt to make a foul shot can be
simulated by a spin against the background

shown in figure 1. If the first “throw” re-
sults in a basket, another spin is made. One
group of students obtained the daia in table
1. At first, there appears to be little pattern
in the results. However, after doing four
sets of twenty-five shots, most students ac-
knowledge that 1 point is not occurring as
frequently as 0 or 2.

144°=04 x 360°
RN

Basket

£
/

216°= 06k 3C0°

Fig. 1. Background for player who shoots with 60
percent accuracy

. From a mathematical point of view, this
is a very interesting situation because the

-theoretical probabilities of the events 0

points, 1 point, and 2 points are obtained
by multiplying probabilities, which is al-
ways harder for students to understand
than situations where probabilities are
added. The theoretical expected frequen-
cies, computed from the probabilities of a
basket, 0.6, or a miss, 0.4, are given in table

Combining the class results and writing
the frequency fractions as decimals give re-
sults close to these theoretical values. Be-
cause the numbers 0.4 and 0.36 are close, it
is often difficult to detect a difference be-
tween the frequencies for v points and for 2
points.

Reprinte(zl b}\' permission from Mathematics Teacher 73: 446-449;

September 1980,
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TABLE !
One Group’s Results of Four Trials
Poir ts Triat 1 Trial2 Trial3 Trial 4 Te * Frequency
' 32
) 7 10 i 4 32 100~ 932
21
1 4 3 4 10 21 100 = 02!
47
0 ] —— =047
2 14 2 1 ]! 100

We can observe a different player who
has probability 0.7 of making a free throw
. by using a new background for the spizner
(see fig. 2). The theoretical expected fre-

TABLE 2
Theoretical F.vyuencies for 60 Percent
Points . Probability
0 04 =04
1 0.6x04 = 0.24
2 06%06 = (.36

quencies for 0, 1, and 2 points are given in
table 3. The students’ results will now al-
most certainly show a clear distinction be-
iween the frequencies for 0 points and for 2
points.

TABLE 3
Theoi.tical Frequencies for 70 Percent
Points Probability
(] 03 =03~
1 0.7%03 =021
2 0.7 X 0.7 = 0.49

After simulating the results fer two play-
ers, many students will make reasonable
. predictions of the results for a superstar
who shoots with 90 ‘percent accuracy. A
follow-up with older or more able students
would be an investigation of the theoretical
frequencies—why probabilities are multi-
plied, and so on.

In the previous activity, each group’s ex-
perimental results agreed, on-the whole,
with the averages of the class results. In the
next activity, the class results are usually
quite different frem the results of any stu-
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dent. This emphasizes the point that proba-
bilistic statements are statements about
what will happen in the long run, over
many trials of the experiment.

Star Wars Simvuiation

The goal for the students is t0 accumu-
late a complete set of six Star Wars models
by “buying” cereal boxes. One model is
contained in each box. (We are assuming
there are so many boxes available that each
box is equally likely to contain any one of
the mo ‘els.) The students’ guesses of how
many boxes they would, on the average,
have to buy to get a complete set are usu-
ally too small. We can simulate purchasing
a box by a spin using a background for the
spinner that reflects the situation—six

equally likely outcomes (see fig. 3). The — - -

students keep count of how many boxes are
bought in collecting a complete set of mod-
els. We had each group record their data

k]

108°20.3x360°

Basket

»

252°=0.7 x 360°

- Fig. 2

154




for collecting four complete sets of models
(see table 4).

The theoretical or expected number of
boxes is obtained using the fact that if an
. event has probability p, on the average it
will take 1/p trials for it to occur. For ex-
ample, the average number of tosses of a

C3PO

Princess

Fig. 3

coin until heads occurs is 1/0.5 = 2, For the
models, the probability that the second box
contains a different figure from the. first is
5/6. Once two distinct models have been
collected, the probability of a box having a
model differen! from both is 4/6. The ex-
pected number of boxes is thus the sur of

l+—+—+—+—+

The students listed the numbers in the
last columa (total number of spins) on the
board. They varied widely: on a list of

- twenty-five numbers. there may be one
‘greater than 45 and another as small as 8.
The average will be close to 15. A dis-
cussion of the significance of this average
will provide a background for the ideas of
dispersion and deviation. How representa-
tive is the average? Are half the numbers
listed within 2 or 3 of this average? Are 2/3
of them within 5 or 6 of the average?

Related investigations would be for the
students to construct new backgrounds for
the spinner. and compute the average
number of boxes needed if there are two,
three, four, five, six, seven, or eight differ-

“ ent models in the set. The expected aver-
ages for these numbers are given in table 5.
For seven different figures the average
number of boxes is

1. v 1 1t 1 1
7,—7'+g+§+4+3+2+1 = 18.15.
If the students graph the number of models
versus the average number of boxes, they
may be able to predict the average for
twenty-five differeut models (baseball
cards) by extrapolating from the graph. Af-
ter this much hands-on simulation, it
would be appropriate to replace the spinner

5 4 3 2 1 . ;
r3 5 3 r3 3 with a computer program to do the simula-
11 11 tion and to keep track of the results. A
-6 3 + 5 +—F—F+=+1=147 sample output from the BASIC program at
43 12 the end of this article is given in table 6
TABLE 4
Set ,Darth OBl Total Number
#1 Vadar Kenobi R2D2 C3PO Luke Princess of Spins
! [ 1 ML 1. | 1. 2
2 1l ([ M I o [l 20
3 L 1] L I I i 2
4 i 1 ] I I I B3
TABLE 5
Approximate Expected Averages
Number of models 2 3 S 6 7 8
Approximate expected average 3 55 83 11.41 . 147 18.15 21.74
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(both have been modified for publication
purposes).

<

TABLE 6
Sampte Computer Output

RUN"

BASEBALL CARDS. THERE ARE
N CARDS IN THE SERIES, ENTER N
25 <
FROM HOW MANY TRIALS DO YOU
WANT TO COMPUTE THE AVERAGE?
10

69 CARDS

151 CARDS

137 CARDS

108 CARDS

108 CARDS .

88 CARDS

133 CARDS

141 CARDS

48 CARDS

101 CARDS
AVERAGE NUMBER OF CARDS IS 108.4
RUN

BASEBALL CARDS. THERE ARE
N CARDS IN THE SERIES. ENTER N
25 P
FROM HOW MANY TRIALS DO YOU
WANT TO COMPUTE THE AVERAGE?
10

82 CARDS

198 CARDS

74 CARDS

192 CARDS

" 67 CARDS

86 CARDS
140 CARDS
56 CARDS
90 CARDS
127 CARDS
AVERAGE NUMBER OF CARDS IS 111.2 7

Conclusion

Both of these activities were designed to
involve students in exploring a probabilis-
tic situation about which their intuition
was faulty. Each of these is rich from the
point of view both of mathematical think-
ing and processes and of the potential for
spin-off in interesting and challenging di-
rections. Making conjcctures, modeiing a
situation. gathering data. and validating

the conjectures should be’a part of every’

student’s mathematical experiences.

4
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APPENDIX
BASIC Program for Baseball Cards

100 DIM C(100)

110 PRINT “ BASEBALL CARDS. THERE ARE™

115 PRINT “N CARDS IN THE SERIES. ENTER N”
120 INPUT N

130 PRINT “FROM HOW MANY TRIALS DO YOU*®
135 PRINT "WANT TO COMPUTE THE AVERAGET
140 INPUT K

150S=0

160 FORI =1 TOK

10D=0 *

180 FORJ = [ TON

190 C(J) = 0

200 NEXT J

210 X = INT (N*RNIDX -l))+ |

220 C(X) = C(X) + 1

230 IF C(X) = | THEN 250

240 GOTO 210 .

250 D=D+1 “
260 IF D = N THEN 280 .

270 GO TO 210

20T=0

290 FORJ= I TON

300 T=T+ C(J)

310 NEXT J

320 PRINT T; “CARDS”

330S=§ + T

34) NEXT

350 PRINT “AVERAGE NUMBER OF CARDS 18°5/K
360 END




